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ABSTRACT 

The limitations of large bone defect regeneration has brought the focus of Bone 

Tissue Engineering research on fabricating three-dimensional bone-mimetic grafts that 

could enhance osteogenesis and vascularization. Osteons composed of apatite-deposited 

aligned collagen nanofiber layers are the fundamental building blocks of cortical bone. In 

natural cortical bone, mineralization is mediated by extracellular matrix (ECM) proteins 

with amino acid sequences rich in glutamic acid. This dissertation is focused on the 

establishment of a novel biomimetic approach to engineer scaffolds for healing large 

bone defects. 

In the first part, we investigated the effect of calcium phosphate (CaP) deposition 

on aligned surface-modified nanofibers (NF) with a glutamic acid peptide (GLU-NF) on 

osteogenic differentiation of marrow stromal cells (MSCs). In order to mimic the 

morphology of the bone ECM, the EEGGC peptide (GLU) with two glutamic acid 

residues was conjugated to a low molecular weight polylactide (PLA) macromer. The 

synthesized PLA-GLU polymer-peptide conjugate was blended with high molecular 

weight poly(lactide-co-glycolide) (PLGA) and electrospun to form GLU-NF. GLU-NF 

microsheets were incubated in a modified simulated body fluid (SBF) for nucleation and 

growth of CaP crystals on the fiber surface. To achieve a high CaP to fiber ratio, a layer-

by-layer (LBL) approach was used to improve diffusion of calcium and phosphate ions 

inside the microsheets. Results demonstrate that surface modification of aligned synthetic 
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NF with EEGGC peptide significantly increased nucleation and growth of CaP crystals 

on the fibers, leading to increased mechanical properties and osteogenic differentiation of 

MSCs. In addition, CaP to fiber ratios as high as 200%, which lie between those of 

cancellous (160%) and cortical (310%) bone, were obtained with the LBL approach. 

In the second part, the perforated CaP deposited NF microsheets were used to 

fabricate osteon-mimetic microtubes. The effect of the microtubular structure of CaP-

deposited NF scaffolds on osteogenesis of MSCs and vascularization of endothelial 

progenitor cells (EPCs) and MSC co-cultures was investigated. It was found that 

microtubular scaffolds preferentially supported osteogenic and vasculogenic 

differentiation of MSCs and MSCs/EPCs as evidenced by elevated gene expression level 

of osteogenic and vasculogenic markers and enhanced calcium content, ALPase activity, 

and total collagen secretion. The osteon-mimetic scaffolds developed in this research are 

potentially useful as tissue engineered graft for regeneration of large bone defects. 
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CHAPTER 1 

INTRODUCTION 

Cranial, maxillofacial, oral fractures and large bone defects are currently being 

treated by using auto- and allografts. These techniques have limitations in the clinical 

usage such as immune response, donor-site morbidity, and lack of availability [1-3]. 

Therefore, the interest on tissue engineering applications for bone graft procedures has 

rapidly been growing. Among the 6 millions fractures occurring every year in the United 

States, there are more than 0.5 million skeletal injuries that require bone graft 

procedures [4]. Tissue engineering approach to bone graft application requires a cell 

supporting scaffold in order to maintain a 3- dimensional substrate for cells to function 

during the formation of bone tissue [5, 6]. The simple fractures in bone tissue can be 

treated by standard conservative or surgical therapy. However, in some cases, such as 

extended bone defects due to trauma or cancer resection bone grafting procedures are 

being performed with engineered biomimetic materials [7, 8].  

 Bone tissue engineering scaffolds needs to provide several criteria in order to be 

a successful candidate for bone graft procedures. An ideal scaffold should be completely 

integrated with the surrounding bone tissue, support sufficient mechanical strength, and 

function as a three dimensional framework for osteoprogenirator cells to fabricate bone 
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matrix. In order to integrate in bone defect site and provide adequate 3D structure,  

scaffolds should fulfill following requirements: (a) should mimic physical and chemical 

composition of the natural bone tissue, (b) should be biocompatible, (c) should be 

porous to allow bone tissue organization and vascular formation, (d) should provide 

appropriate surface chemistry and mechanical strength to support cellular attachment, 

proliferation and differentiation and (e) should degrade simultaneously with the newly 

grown bone tissue [9, 10].   

The cortical bone composed of osteons that have microtubular structures with a 

central vascular channel inside for ensuring suitable nutrient/waste transport to the bone 

tissue [11]. The osteons are the structures form by laminated multilayers of apatite 

nucleated aligned collagen nanofibers (NF). Mineralization of collagen NF is a well-

regulated process mediated by many extracellular matrix proteins, such as bone 

sialoprotein (BSP) and osteonectin (ON). These non-collagenous proteins contain a large 

amount of glutamic acid (Glu) residues, which act as frameworks for depositing apatite 

crystals on collagen fibers in nature bone [12-14].  The apatite crystals provide 

mechanical strength for bone formation [15], while the collagen fibers provide structural 

support and locations for cell adhesion and regulate cell functions such as cell adhesion, 

proliferation, differentiation, and mineralization [16].  

In order to develop biologically functional engineered bone tissue, it is important 

to design scaffolds with micro- and nano-sized architecture similar to that of native bone. 

Nanofibers (NFs) produced by electrospinning (ES) have attracted much attention 

recently in tissue engineering applications [17]. Synthetic and natural polymers have been 

electrospun into NFs with diameters ranging from tens of nanometers to a few 
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micrometers. Due to their characteristics such as providing a large surface-to-volume 

ratio and mimicking the natural extracellular matrix structure (ECM) of bone tissue, NFs 

has been found to be a suitable scaffold for tissue engineering [18, 19]. However, poor 

mechanical properties and relatively 2-dimensional (2-D) formation of electrospun NFs 

limit their usage in bone tissue engineering applications. To overcome these limitations 

of electrospun nanofibers, 3-D ceramic/polymer composite materials have been identified 

for the preparation of bone tissue engineering scaffolds [20, 21]. The theory behind 

designing such scaffolds is based on the osteon-mimetic mechanism of the unique 

structure of HA/collagen in natural bone. Bone itself has a broad spectrum of mechanical 

properties, depending on its type, humidity, mineral content, density, porosity, and 

collagen fiber orientation [22]. The hierarchical organization between calcium phosphate 

crystals and collagen fibers allows bone to possess both excellent bioactivities and 

mechanical properties. Therefore, microtubular engineered 3-D biomaterials composed of 

apatite-nucleated aligned NF would potentially provide temporary structural support to 

the regenerating region, initiate osteogenic and vasculogenic differentiation, and degrade 

simultaneously with the production of bone ECM. Consequently, the biomimetic 

scaffolds aims to mimic the 3-D hydroxyapatite/collagen nanofibers structure of natural 

bone.
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

2.1 BONE TISSUE 

Tissue is a group of cells which have similar functions in the body. Human body 

consists of approximately 200 different types of cells which organized into four main 

tissues: connective, epithelial, nervous and muscle tissues. Bones are composed of 

connective tissues, which have extracellular matrix (ECM) in addition to the cells. Most 

connective tissues have nerves and blood supply and consist of scattered cells submerged 

in the ECM. The matrix contains structural networks and solutions of non-living 

intracellular material. The matrix consists of different amount of fibers and ground 

substances, which identify the character of the matrix. Bones are considered as 

supporting connective tissues, which have a less diverse cell population compared to 

other connective tissues. Bones are composed of a composite fibrous network collagen 

encased within a hard matrix of calcium/phosphate. Mature bone matrix consist of 

approximately 35% organic (collagen fibers, glycoproteins and proteoglycans) and 65% 

inorganic material (hydroxyapatite, calcium carbonate and magnesium hydroxide). The 

organic materials and mineral salts give bone its major characteristic function. Collagen 

is responsible for the flexibility and resistance to being stretch, whereas the mineral salts 

give the matrix compression strength. For instance, if all the mineral salts are removed
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from the bone matrix, bone becomes overflexible. On the contrary, if the collagen 

removed from the bone, the bone will be more breakable [23-26]. 

Connective tissue originates from mesenchymal cells. Mesenchymal stem cells 

(MSCs) have ability to diferentiate into more specialized cell arrays. Osteoprogenitor 

cells are basic stem cells of bone structure. They have ability to become osteoblasts or 

chondroplasts. Osteoprogenitor cells differentiate to osteoblasts if they are located close 

to capillaries where oxygen concentration is high; otherwise they become chondroplasts 

where they are far from capillaries. Bone cells can be categorized in four parts which 

have all different functions and origins: osteoblasts, osteocytes, osteoclasts, and 

osteoprogenitors. Osteoprogenitors are undifferentiated cells which will undergo mitosis 

and develop into osteoblasts. They are usually found on the surfaces of bones and bone 

cavities containing blood vessels and bone marrow. Osteoblasts grow from 

osteoprogenitor cells located in the periosteum and the bone marrow. Osteoprogenitors 

are induced to differentiate under the influence of growth factors, in particular the bone 

morphogenetic proteins (BMPs). Osteoblasts have a large endoplasmic reticulum and 

numerous ribosomes. They are derived from osteoprogenitor cells and produce collagen 

and proteoglycans, which are stored by the Golgi apparatus and released from the cell.  

The formation of bones by osteoblasts is called ossification or osteogenesis. The 

interaction between osteoblasts forms the bone extracellular matrix (ECM) which 

surrounds the cells. After an osteoblast starts to be surrounded by bone ECM, it becomes 

an octeocyte. The majority of the bone cells are osteocytes, which derive from 

osteoblasts, are found embedded in the bone matrix. Lacunae are the spaces that are 

occupied by the osteocyte cell bodies and canaliculi are the spaces occupied by the 
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osteocyte cell processes. Osteocytes do not secrete bone matrix. They only maintain the 

matrix surrounding them in good condition. Osteoclasts are large cells with more than 

one nuclei. They are responsible for resorption of bone. Osteoclasts produce some 

enzymes which help breaking down the bone ECM. This function of the osteoclasts is 

important in the development, growth, maintenance and repair of bone [23, 24, 26, 27].  

 

 

Figure 2.1 Bone Cells [24] 

 

2.2 BONE STRUCTURE AND FUNCTIONS 

Bone tissues consist of osteocytes scattered in a hard calcified matrix. Each bone 

in the skeleton has two different forms of osteon tissue: compact bone and spongy bone. 

Compact bone is relatively solid; however, spongy bone has a smooth structure. Compact 

bone consists of closely packed microscopic cylindrical structures called osteons. The 

matrix and osteocytes of the osteon are laid down in concentric rings around a central 

(Haversian) canal that contains blood vessels and nerves. Fine cellular extensions connect 

osteocytes within an osteon to each other and to the Haversian canal. Nutrients and 
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wastes are exchanged between the osteocytes and the blood vessels through these cellular 

extensions. Blood vessels which run through the central canals are connected to the blood 

vessels in the periosteum that surrounds the bone by perforating canals called 

Volkmann’s canals. Compact bone tissues make up the shaft of long bones and are 

located at the outside surface of other bones. Spongy bone consists of an irregular 

latticework of thin plates of bone called trabeculae. Blood vessels and red marrow, which 

produces blood cells, fill the spaces between trabeculae. These blood vessels are 

connected to blood vessels found in the Volkmann’s and Haversian canals. In contrast to 

compact bone, spongy bone does not contain osteons and is found inside the bones. 

Compact bones are located on the surface of a bone to protect the bone structure, whereas 

spongy bones are located inner part of the bone. Bones are the framework for supporting 

the attachment of muscles and other tissues. Besides, bone protect internal organs from 

outside effects such as the skull protecting the brain or the ribs protecting the heart and 

lungs. Bones work together with skeletal muscles, tendons, ligaments and joints for body 

movement. The red marrow which is within the medullar cavity of long bones produces 

red blood cells. Bones are storage of several essential minerals such as calcium and 

phosphorus, and help kidney for arranging acid-base balance by absorbing or releasing 

alkaline salts [23, 26, 27]. 

2.3 BONE TYPES 

There are five types of bones in the human body: long, short, flat, irregular, 

sesamoid, and sutural bones. Long bones are much greater in length than width such as 

limbs, fingers and toes. Long bones consist of a shaft (diaphysis) and two extended ends 

(epiphysis). The diaphysis is made out of compact tissue surrounding a central cavity 
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which is called medullar cavity. Epiphysis contains spongy bones and red marrow and it 

is covered by thin layer of compact tissue. Hyaline cartilage overlaps the epiphysis on its 

outer surface. The periosteum covers the outside of the long bone. Short bones have a 

structure similar to long bones. Examples of short bones include carpal bones and tarsal 

bones. Flat bones, which form the roof of the skull, the sternum, the ribs and the scapula, 

have thin, severally parallel surfaces. Protection of underlying soft tissues and providing 

the surface area for muscles attachment are basic functions of flat bones. Irregular bones 

have complex shapes. They are located at several skull and spinal vertebra. Sesamoid 

bones are small, flat, and shaped like sesame seeds. They are located near joints on the 

knees, the hands and the feet. Sutural bones are small, flat, irregularly shaped bones 

between the flat bones of the skull [23, 26]. 

 

 

Figure 2.2 Classification of Bones [23]. 
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2.4 BONE DEVELOPMENT AND GROWTH 

The size and proportions of our body are determined by the growth of the 

skeleton. After 6 weeks from fertilization, the bone skeleton starts forming. Bones keep 

growing through adolescence until age 25. Bone might develop from mesenchymal cells 

or by the replacement of cartilage. Ossification, which refers to the formation of bone, is 

the process of replacement from other tissues to bone tissue. Calcification is the 

deposition of the calcium salts. There are two forms of ossification: intramembranous and 

endochondral ossification. In intramembranous ossification, mesenchymal cells and 

fibrous connective tissue are the major source of bone tissue. In endochondral 

ossification, bone differentiates from existing cartilage [23, 26].  

Intramembranous ossification starts when osteoblasts differentiate within a 

mesenchymal or fibrous connective tissue and occurs in the deeper layers of the dermis. 

Embryonic mesenchyme condenses around the developing brain to form a membrane of 

connective tissue with oriented, delicate fibers. Osteoprogenitor cells differentiate to 

osteoblasts, which produce bone matrix to surround the aligned collagen fibers. After that 

process, many trabeculae of woven bone are formed. The rest of osteoblasts gather close 

to the surface of the trabeculae and produce larger trabeculae. Trabeculae join together to 

be able to develop cancellous bone. The cells, which are located in the inner part of 

cancellous bone, develop red bone marrow. After cancellous bone is developed, the cells 

that surround the outer part of the bone form periosteum. Osteoblasts develop the 

periosteum and bone matrix to form the outer surface of the compact bone. Endochondral 

ossification begins with the formation of hyaline cartilage at the end of the fourth week of 

development. The mesenchymal cells differentiate to chondroplasts. Chondroplasts 



 

10 

develops a hyaline cartilage having the original shape of the bone. After chondroplasts 

are surrounded with cartilage matrix they become chondrocytes, which is surrounded 

with perichondrium. After blood vessels are connected to perichondrium, osteoprogenitor 

cells become osteoblasts and begin producing the bone structure. As osteoblasts keep 

producing bones, perichondrium turns out to periosteum [23, 26, 27]. 

2.5 BONE SUBSTITUTES  

Bone graft substitutes are required to repair the injuries that are extremely hard 

for the body to cure by using the bone repair process. Approximately 500.000 bone grafts 

operations are made annually in the United States. There are basically three major 

methods of bone substitute usage in medical applications. Autografting, which comprises 

58% of the current bone substitutes, is a graft made of bone from the patient’s own body. 

An example for one of the most commonly performed bone autograft is being used in 

spinal fusion. In a fusion procedure, bone graft from the patient's hip is implanted in disc 

spaces between spinal vertebrae or along the back of the spine. The grafted bone fuses the 

vertebrae together over several months. Allografting, which represents about 34% of the 

current bone substitutes, contains harvesting and processing bone from a cadaver then 

transplanting it to the patient. Allogenic implants are acellular and are less successful 

than autografts for immunogenicity and the absence of viable cells that become 

osteoblasts. Another disadvantage of allografting is high risk of transmitted diseases. 

Man-made materials such as metals, plastics, and ceramics represent approximately 8% 

of bone substitutes. These materials, however, are subject to fatigue, fracture, toxicity, 

and wear, and do not remodel with time, such as a metal bone implant, which cannot 

grow with the patient and it cannot change shape in response to the loads placed upon the 
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implant. For all these reasons, there is an increasing need for alternative bone substitutes 

and better wound healing therapies. The numerous research have been done on 

engineering natural or synthetic scaffolds to make them suitable for bone regeneration 

applications. The main idea of bone tissue engineering is to develop similar structural and 

functional properties of the bone ECM [26-28]. 

2.6 BONE TISSUE ENGINEERING  

Tissue Engineering is an interdisciplinary field that combines the principles of 

biology and engineering to mimic human tissues. The general requirements for developed 

scaffolds are easy handling and applying, being readily adherent, having appropriate 

mechanical and physical properties, being non-toxic, non-antigenic, sterile, 

osteoconductive, cost effective, and undergoing controlled degradation. Tissue 

engineering techniques involve mimicking the natural bone structure by placing the cells 

and growth factors in synthetic scaffolds that act as temporary bone ECM [26, 28]. The 

major function of a degradable scaffold is to support the transplanted tissues. There are 

many kinds of biomaterials being used for bone tissue engineering applications such as 

natural and synthetic polymers, ceramics, and composites [26, 29]. 

2.7 BIOMATERIALS FOR SCAFFOLD FABRICATION 

Natural and synthetic materials have been investigated as a matrix for 

biomimetic scaffold fabrication in bone tissue engineering [30]. Natural materials 

provide a conductive matrix for cell migration and adhesion since they include the 

biological cues but they are lack of sufficient mechanical strength to prevent soft tissue 

compression [31]. Synthetic materials could be designed with defined physical and 

mechanical properties, but they lack bioactive cues to support cell−matrix interactions 



 

12 

required for adhesion, proliferation, and differentiation. Therefore, an ideal scaffold 

must provide the optimum structural parameters, conductivity to the cellular activities; 

these include cell penetration and migration into the scaffold, cell attachment onto the 

scaffold substrate, cell spreading and proliferation. 

One of the first considerations when designing a scaffold for bone tissue 

engineering is the choice of material [32, 33]. In order to mimic the mineralized 

nanofibrous structure of natural bone tissue, two main material types; natural polymers 

and synthetic polymers, and their composite structures with hydroxyapatite have been 

successfully investigated for biomimetic scaffold fabrication. 

2.8 NATURAL POLYMERS 

Natural polymers, which commonly derived from protein or carbohydrate 

polymers, can be considered as the first biodegradable scaffolds used clinically in bone 

tissue engineering applications [34]. These polymers have a number of advantages such 

as outstanding biocompatibility, relative abundance, and biodegradability.  However, the 

batch-to-batch variations in the structure, insufficient mechanical strength and risk of 

immunogenic effect when implanted require using natural polymers with some 

modifications. Here, we focus on most widely used natural polymers; collagens, 

chitosan and gelatin, which can be fabricated in fibrous structure and their composite 

structures by incorporating calcium phosphate crystal for bone tissue engineering 

applications [35].  

Since collagen is the major protein in bone extracellular matrix, it is considered 

by many researchers as an ideal scaffold for tissue engineering applications [35]. 

Twenty-seven types of collagens have been identified so far, but collagen type I is the 
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most investigated one since it is the most abundant collagen in bone tissue [36]. The 

functions of collagen are providing support to connective tissues such as skin, tendons, 

bones, cartilage, blood vessels, and ligaments [37, 38], transduces essential signals for 

the regulation of cell anchorage, migration, proliferation, differentiation, and survival 

[39]. Bone tissue engineering scaffolds requires high mechanical strength for in vivo 

applications of the scaffolds. Therefore, scaffolds for bone tissue engineering require 

hardening of a collagen biomaterial by mineralization [22, 40] or combining with 

hydroxyapatite crystals [41, 42]. Recently, a broad range of bone tissue engineering 

products based on collagen scaffolds have been developed. For example, Xiao et al. 

fabricated three-dimensional type I collagen based scaffolds and seeded with 

osteoprogenitor cells and implanted into critical-size bone defects in skulls of 

immunodeficient (SCID) mice. They have shown new bone formation at the critical 

defect site after 28 days [43]. Chan et al. developed a collagen microencapsulation 

technology by encapsulating bone marrow–derived mesenchymal stem cells (MSCs) in a 

biomimetic collagen fiber meshwork and investigate the differentiation capacity of the 

MSCs. The differentiation of MSCs was confirmed with significantly increased calcium 

content and alkaline phosphatase activity in the collagen microspheres [44]. In addition, 

there are some developed collagen based scaffolds in the market that have been used as 

bone grafts. For example, a mixture of porous hydroxylapatite and tricalcium phosphate 

and collagen I was fabricated by Angiotech Pharmaceuticals, Inc. and have been used 

clinically for healing large bone defects. Furthermore, hydroxyapatite coated collagen 

fibers developed by DePuy Orthopaedics has been approved for clinical use as a bone 

graft substitute in spinal fusions [39]. 
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Chitosan the second most abundant natural polymer is produced from chitin, 

which is a natural polysaccharide found in crab, shrimp, lobster, coral, jellyfish, 

butterfly, ladybug, mushroom and fungi [45]. Chitosan can be easily modified into 

various forms such as films, fibers, and more complex shapes for bone tissue 

engineering applications [46]. However, chitosan based scaffold by itself cannot support 

load bearing bone grafts. Developing composite matrix by combining calcium phosphate 

crystals with chitosan based scaffolds improve the mechanical properties of chitosan and 

make it suitable for bone tissue engineering applications [46, 47]. For example, Zhang et 

al. developd a novel biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan 

(HAp/CTS) and seeded with human fetal osteoblast (hFOB) cells for up to 15 days. The 

results demonstrated that incorporation of HAp nanoparticles into chitosan nanofibrous 

scaffolds shows significant higher mineral deposition compared to pure electrospun CTS 

scaffolds [48]. Thein-Han et al. and Teng et al. prepared biomimetic CTS/HA composite 

membranes and seeded with pre-osteoblasts (MC 3T3-E1) cells. Cell culture 

experiments demonstrated that CTS/HA composite scaffolds are potential candidate 

materials for bone regeneration [49, 50]. 

Gelatin is a natural polymer that is derived from collagen by hydrolysis, and is 

commonly used for pharmaceutical and tissue engineering applications because of its 

biodegradability and biocompatibility in physiological environments [51, 52]. Since 

gelatin is a denatured format of collagen, it has relatively low antigenicity compared to 

other natural polymers [38]. Gelatin-based composites with incorporation of calcium 

phosphate crystals, therefore, provide an alternative scaffold for bone tissue engineering 

applications. For example, Takahashi et al. fabricated biodegradable gelatin sponges 
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incorporating β-tricalcium phosphate (βTCP) (gelatin-βTCP) and investigated the in 

vitro osteogenic differentiation of MSCs isolated from the rat bone marrow. The alkaline 

phosphatase activity and osteocalcin content results demonstrated that osteogenic 

differentiation of MSCs occured when seeded on gelatin-βTCP sponges [53]. Xia et al. 

investigated the potential application of bone marrow stromal cells (BMSCs) and an 

injectable sodium alginate/ gelatin scaffold for bone tissue engineering (BTE). The 

phenotype of osteogenic BMSCs was examined by mineralized nodules formation and 

type I collagen expression. They showed that sodium alginate/ gelatin scaffold promoted 

the bone formation and bone healing when implanted in the rabbit calvarial critical-sized 

defect [54]. He et al. fabricated three-dimensional mineralized (3-D) porous gelatin 

scaffolds and seeded with MC3T3-E1 pre-osteoblastic cells. The results inticated that 

the MC3T3-E1 cells grown on the mineralized gelatin scaffolds showed higher levels of 

ALP activity and osteocalcin expression than that on the neat gelatin scaffold [55]. Liu 

et al. fabricated nanofibrous gelatin/apatite (NF-gelatin/apatite) composite and seeded 

with pre-soteoblastic cells. They were demonstrated that the expression of bone 

sialoprotein and osteocalcin in the osteoblast–(NF-gelatin/apatite composite) constructs 

was about 5 times and 2 times higher than in the neat gelatin constructs after four weeks 

of cell culture [56]. Besides the direct implantation into bone defect site, gelatin has also 

been used as controlled-release devices of basic fibroblast growth factor (bFGF), 

transforming growth factor-h1 (TGF-β1), bone morphogeneticprotein-2 (BMP-2) growth 

factors which have specific function on enhancing bone formation [57, 58].  

Overall, as the previous studies indicated the disadvantage of using insufficient 

mechanical strength natural polymers could be improved by combining with calcium-
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phosphate (CaP) based crystals and make them suitable for bone tissue engineering 

applications. 

2.9 SYNTHETIC POLYMERS 

Synthetic polymers based scaffolds have some advantages compared to natural 

polymers such as reproducibility, unlimited supply, relative lack of immunogenic effect, 

and tunable properties such as degradation rates and mechanical strength. Synthetic 

polymers used for bone regeneration include poly(lactic acid) (PLA), poly(glycolic acid) 

(PGA), poly(lactic-co-glycolic) acid (PLGA), polypropylene fumarate (PPF), and the 

polyhydroxyalkanoates (PHAs) [59]. Combining polymers with hydroxyapatite creates 

biomimetic scaffolds that enhance bone tissue formation. 

Poly lactic acid (PLA) is a biodegradable polyester synthesized by poly-

condensation of lactic acid, and amonomeric precursor that can be obtained from 

renewable resources. Lactic acid is a chiral molecule available in the L and D 

stereoisomer forms. Since L-lactic acid occurs in the metabolism of all animals and 

microorganism, it’s degradation products are completely non-toxic [60, 61]. PLA based 

scaffolds are biodegradabile, biocompatibile, and have suitable mechanical properties, 

and ability to be dissolved in common solvents for processing. Due to these features, 

PLA has been successfully used for bone tissue engineering applications [61]. For 

example, Liao et al. fabricated a composite scaffold consisting of nano-HA/collagen and 

seeded with osteoblasts isolated from rat. Then, the composite scaffold was implanted 

into critical size defect in rabbit. The results showed that osteoblasts adhered, spread, and 

proliferated throughout the pores of the scaffold within a week and the implanted 

composite was partially substituted by new bone tissue after 12 weeks [62]. Our group 
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also produced random and aligned PLA nanofibers via electrospinning technique and 

seeded with rat MSCs. We investigate the effect of fiber alignment on osteogenic 

differentiation of MSCs. The results indicated that BMS cells aligned in the direction of 

PLLA fibers to form long cell extensions, and fiber orientation affected the extent of 

mineralization, but it had no effect on cell proliferation or mRNA expression of 

osteogenic markers. 

Poly (glycolic acid) (PGA) and poly (lactic acid) (PLA) are biodegradable 

synthetic polymers, which can react to form the copolymer poly (lactic-co-glycolic acid) 

(PLGA). The main advantage of PLGA is that the ester bonds that make up the backbone 

of the polymer can be hydrolyzed, causing the scaffold to degrade into metabolite 

nontoxic by-products. These by-products can be absorbed by the body and may cause pH 

changes around the implantation site. In addition, the degradation profile of PLGA can be 

controlled by changing the ratio of PGA to PLA in the scaffold [63]. These feature make 

PLGA based scaffolds a good candidate for bone tissue engineering applications. For 

example, Lao et al. fabricated PLGA/HA nanofibers composite by electrospinning and 

seeded with neonatal mouse calvaria-derived MC3T3-E1 osteoblasts. The results showed 

that composite scaffolds could support cell adhesion and proliferation [64].  

Polycaprolactone (PCL) has low melting point of around 60°C and a glass 

transition temperature of about −60°C. PCL can be degraded by hydrolysis of its ester 

linkages in physiological conditions and has high mechanical strength compared to most 

of the synthetic polymers. Due to these features, PCL has been widely used in bone tissue 

engineering applications [65]. For example, Shin et al. produced highly porous, 

degradable PCL scaffold by electrospinning, seeded with rat MSCs, and cultured in a 
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rotating bioreactor for 4 weeks. The scaffold then implanted into the omenta of  rats for 4 

weeks. The results showed bone like tissue formation on the implant site [66]. In another 

study, Venugopol et al. fabricated (PCL/nHA/Col) biocomposite nanofibrous scaffolds to 

provide mechanical support and seeded with human fetal osteoblasts (hFOB). They 

indicated that the nanoscale biocomposite scaffold supported hFOB adhesion, migration, 

proliferation and mineralization to form a bone tissue for the regeneration of bone defects 

[67]. 

2.10 CALCIUM PHOSPHATE CERAMICS 

Calcium phosphate (CaP) ceramics have also been used to synthesize biomimetic 

scaffolds for bone tissue engineering. The main purpose to use CaP ceramic is that CaP 

is abundantly found in bone tissue and it shows biocompatibility, and osteoconductivity. 

However, the major drawbacks for using CaP ceramics are low mechanical stability and 

the inability to control the pore size and chemical composition. The most widely studied 

CaP ceramics are tricalcium phosphate (TCP), hydroxyapatite (HA, Ca10(PO4)6(OH)2), 

and tetracalcium phosphate [68]. Although several studies have shown bone 

regeneration with CaP based scaffold implantation, the feature of being highly brittle 

prevents using CaP ceramics for bone defects [21, 69]. In order to overcome these 

drawbacks of using CaP ceramics by itself as a scaffold, combination of natural or 

synthetic polymers with CaP ceramics have been used for bone tissue engineering 

applications. 

2.11 FABRICATION TECHNIQUES OF BIOMIMETIC FIBROUS SCAFFOLDS  

In order to mimic the three-dimensional structure of natural bone tissue, 

biomimetic scaffolds must facilitate the cell distribution and guide their growth into 
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three-dimensional space. Collagen nanofibers in natural bone tissue have fibrous 

structure with diameter range of from 50 to 500 nm [70, 71]. The ideal biomimetic 

scaffolding techniques should allow fabricating the nanofibrous structure of collagen 

nanofibers in natural bone. Several methods have been developed to fabricate 

nanofibers, such as  self-assembly [72], phase separation [73], and electrospinning [74, 

75]. 

Self assembly is the organization of the molecule into an ordered structure 

required for specific function (Zhang, 2003). The structure of the self assembled 

molecules are maintained by non-covalent bonds such as hydrogen bonds, ionic bonds, 

and hydrophobic interactions [76] . Peptides and proteins can be self assembled to form 

nanofibrous well-defined functional structures [77, 78]. The advantage of the self 

aseembly technique over phase separation and electrospinning is producing much 

smaller nanofibers. However, the drawbacks of low mechanical strength and limited 

macroporous structure of self assembled peptides prevents them to be ideal biomimetic 

scaffold for bone tissue engineering applications. 

 

Figure 2.3 Molecular models of self-assembling peptides [79] 
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Figure 2.4 Schematic of the electrospinning process [80] 

 

The electrospinning technique for the scaffold fabrication uses the electrostatic 

force for the production of polymeric fiber ranging from nanoscale to microscale. In the 

electrospinning process, the use of a high voltage electrostatic field to charge the surface 

of a polymer solution droplet induces the ejection of a liquid jet through a spinneret. 

Applied electrical field between a droplet of a polymer solution, which is held in the 

syringe, and a grounded target makes the polymer solution to be ejected when the applied 

electric field overcomes the surface tension of the polymer solution. During the ejection, 

solvent in the polymer solution evaporates, and electrospun nanofibers are collected on 

the grounded collector [80-85].  System and process parameters are the two sets of 

parameters that affect the process of electrospinning. System parameters such as polymer 

molecular weight and distribution determine the rate of nanofiber degredation. Polymer 

solution properties such as viscosity, surface tension, and conductivity, determine the 

nanofiber diameter. Process parameters such as orifice diameter, flow rate of polymer, 

and electric potential also have significant influence on fiber diameter. Process 
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parameters such as distance between syringe and metal collector determine the extent of 

evaporation of solvent from the nanofibers and deposition on the collector [80, 85, 86]. 

Electrospinning has been used to produce nanofibers (NFs) [17] from natural 

biopolymers, like collagen and chitosan, or synthetic polymers such as poly(L-lactide) 

(PLLA) and poly(ε-caprolactone) (PCL) [78, 87-89]. Among these fabrication techniques 

of fibrous biomimetic scaffolds, electrospinning has been regarded as the most promising 

approach to fabricate nanofibers with adjustable fiber diameter from nanometer to 

micrometer [87].The advantages of this technique is that it can produce nanofibers that 

can provide high surface-area-to-volume ratio, similar morphology to the collagen 

nanofiber in natural bone, degradability, biocompatibility, and high mechanical strength 

for cell adhesion, proliferation and differentiation [90, 91]. These characteristics are 

favorable for better cellular growth and tissue organization for in vitro and in vivo bone 

tissue engineering applications [18, 92]. 

 

 

Phase separation technique for fibrous scaffolds fabrication relays on 

temperature change that separates the polymeric solution in two phases, one having low 

 

 

Figure 2.5 SEM micrographs of (a) random and (b) aligned fibers, electrospun from 9.0 

wt % PLLA in HFIP solvent. The diameter and rotation speed of the collecting wheel 

were 20 cm and 1200 rpm, respectively [93]. 
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polymer concentration (polymer lean phase) and other having the high polymer 

concentration (polymer rich phase) [94]. Phase separation process for nanofiber 

formation consists of five steps: polymer dissolution, phase separation and gelation, 

solvent extraction, freezing, and freeze-drying under vacuum [70]. The fiber network 

formation depends on the solvent of the polymer solution and the gelation temperature. 

The fibers formed in this manner have diameters ranging from 50–500 nm, and have a 

porosity in excess of 98% [56, 70]. The advantage of the phase separation technique is 

that it can be combined with other processing techniques such as particulate leaching to 

fabricate biomimetic scaffolds with well-defined pore morphologies [95]. 

 

 

 

 

Figure 2.6 Schematics of phase separation for obtaining nanofibers structure [96]. 
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2.12 DESIGNING OF BIOMIMETIC SCAFFOLDS  

The limitation of using synthetic biodegradable polymers as biomimetic 

scaffolds is that they cannot promote cell adhesion, proliferation, and differentiation as 

much as natural polymer because they often lack of biological cues. Although growing 

hydroxyapatite on synthetic scaffold improves osteoconductivity and cellular 

interactions, further surface modifications should be done to completely overcome the 

problem of limited cell recognition points. For example, Langer et al. synthesized 

poly(L-lactic acid-co-L-lysine) and conjugated Arg-Gly-Asp (RGD) peptide to the 

lysine residue of the copolymer to enhance cell adhesion. The RGD peptides of ECM 

proteins interact with MSCs through integrin surface receptors to facilitate cell 

spreading and adhesion. The results demonstrated that cell spreading mean area was 

significantly increased on scaffolds with RGD peptide [97, 98]. Hu et al. fabricated 

RGD peptide attached porous poly(lactic acid) (PLA) scaffolds and seeded with 

osteogenic precursor cells to investigate the RGD peptide attachment on cell 

proliferation and differentiation. The results of this study indicated that RGD peptide 

attachment to the surface of PLA polymer scaffolds enhances cell attachment and 

differentiation [99]. Our group recently produced RGD and bone morhogenic peptide-2 

(BMP-2) grafeted Poly (lactide-co-ethylene oxide-co-fumarate) (PLEOF) based 

hydrogels and investigate the effects of RGD and BMP peptide on osteogenic 

differentiation and mineralization of MSCs. Our results demonstrated that RGD and 

BMP peptides, grafted to a hydrogel substrate, act synergistically to enhance osteogenic 

differentiation and mineralization of MSCs [100].  
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The function of calcium phosphate crystals (mainly hydroxyapatite) in a 

composite scaffold is providing good osteoconductivity while the fibrous structure of 

natural or synthetic polymer supports design flexibility to achieve the high porosity and 

high surface area for cell survival and differentiation [56, 70]. Zhang et al. and Ma et al. 

developed highly porous poly(L-lactic acid) (PLLA) and PLLA/hydroxyapatite (HAP) 

composite scaffolds with a thermally induced phase separation technique and seeded 

with osteoblastic cells. The proliferation of osteogenic cells and expression of bone 

sialoprotein and osteocalcin were significantly higher in the PLLA/HAP composite 

scaffold than in the PLLA scaffolds [98, 101]. Marra et al. fabricated hydroxyapatite 

incorporated biodegradable poly(caprolactone) and poly(D,L-lactic-co-glycolic acid) 

scaffolds by solvent-casting followed by particulate-leaching technique and seeded with 

rabbit bone marrow stromal cells . They have shown bone extracellular matrix formation 

(approximately 20% tissue ingrowth) after 8 weeks of in vitro culture [102]. In 

particulate leaching technique, defined shape salt particules are poured into a mold with 

hydroxyapatite crystals and polymer solution. Polymer solution is then cast into the salt-

filled mold. After the evaporation of the solvent, the salt crystals are leached away using 

water to form the pores of the scaffold [103].  

Many biomimetic approaches to mineralization involve soaking a polymer 

construct in simulated body fluid (SBF), a type of medium with ion concentrations 

approximately similar to human plasma. Different composition of SBF such as 1xSBF, 

5xSBF, and 10xSBF, indicating the molar ratio of the components relative to body fluid, 

have been developed in order to deposit different structure of CaP crystals and reduce 

the duration of biomineralization [104-106]. For example, Cowan et al. fabricated 
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mineralized poly(lactic-co-glycolic acid) (PLGA) scaffolds by soaking the scaffold into 

5xSBF and seeded with BMS cells. They have shown that mineralized PLGA scaffolds 

produced new bone formation after 4 weeks; however, the non-mineralized scaffolds did 

not show any bone formation at the same time point [107].  

Most of the fabricated scaffolds have inert surface that does not allow 

biomineralization when incubating in the SBF. Therefore, research in the area of 

biomimetic mineralization has been mainly focused on the surface modification of the 

scaffolds. Several surface modification methods have been developed for enhancing CaP 

deposition [108, 109]. For example, Kim et al. functionalized the surface of Titanium (Ti) 

by hydroxylation which forms Ti-OH groups on the surface and immered into SBF to 

investigate the surface modification on bone-like apatite deposition. The results indicated 

that the Ti-OH groups enhanced the formation of apatite on the Ti alloys [110]. Yang et 

al. fabricated electrospun polycaprolactone (PCL) scaffold and functionalized with 

plasma surface treatment to replace the weak chemical bonding of PCL with highly 

reactive carbonyl (–CO–), carboxyl (–COOH) and hydroxyl (–OH) groups. They 

demonstrated that there was significantly higher CaP nucleation on the surface 

functionalized PCL scaffolds [109, 111]. Murphy et al. functionalized the surface of 

PLGA by hydrolysis, which increases the amount of surface carboxyl and hydroxyl 

groups due to scission of polyester chains. The availability of carboxyl and hydroxyl 

groups enhanced the apatite growth [112] .The functionalized surfaces of the biomimetic 

scaffolds act as an anologus template of osteonectin and bone sialoprotein, which have 

highly glutamic acid and aspartic acid residues and function on mineralization in natural 

bone.  Therefore, in order to mimic the biomineralization occurs in natural bone tissue 
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our group has done several studies. We synthesized osteonectin-derived peptide 

containing 6-glutamic acid sequence by solid phase peptide synthesis.  In order to 

covalently attach the peptide to in situ crosslinkable PLEOF hydrogel, one end of the 

synthesized peptide was functionalized with an acrylate group. We investigated the effect 

of osteonectin derived peptide on the viscoelastic properties of PLEOF/apatite composite. 

The results demonstrated that the osteonectin derived peptide significantly affects the 

shear modulus of the scaffold because of ionic interactions between the peptide and HA 

crystals [12, 13].  
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3.1 INTRODUCTION 

Bone is a composite matrix composed of mineralized aligned collagen nanofibers 

[113]. Combination of inorganic apatite nanocrystals and organic collagen fibers provides 

bone with unique mechanical and biological properties [15, 114]. The apatite 

nanocrystals provide osteoconductivity and stiffness while the collagen fibers provide 

elasticity and a template for mineralization and maturation of osteoprogenitor cells. 

Unique factors that contribute to bone toughness are the aligned network of collagen 

fibers, apatite nanocrystals, and proteins in the bone extracellular matrix (ECM) that link 

the apatite crystals to the collagen fibers. In an effort to mimic the morphology of the 

ECM, electrospinning has been used to produce aligned nanofibers (NFs) [17] from 

natural biopolymers, like collagen and chitosan, or synthetic polymers such as poly(L-

lactide) (PLLA) and poly(ε-caprolactone) (PCL) [78, 87-89]. Due to their nano-scale size 

and
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alignment, electrospun NFs provide enormous surface area for cell adhesion, migration, 

and differentiation [115]. 

Different methods are used to create a composite of nanofibers reinforced with 

calcium phosphate (CaP) crystals to improve mechanical strength and provide a 

conductive matrix for osteoprogenitor cells [116, 117]. In one approach, CaP 

nanocrystals were mixed with the spinning solution and the solution was electrospun to 

form CaP composite NFs [118, 119]. In that approach, CaP loading and strength of the 

composite were limited by viscosity of the spinning solution. In another approach, 

electrospun nanofibers were laminated with a CaP paste to form a composite sheet [120]. 

This approach was limited to CaP pastes and toughness of the composite depended on the 

extent of penetration of the paste in the fiber mesh. In a biomimetic approach, NFs were 

coated with CaP crystals by incubation in a modified simulated body fluid [106, 121-

123]. The latter approach mimicked the morphology of the mineralized bone matrix but 

drawbacks included diffusion-limited penetration of calcium and phosphate ions in the 

central part of the fiber sheet and crystal nucleation on the fiber surface.  

Nucleation, growth, and stabilization of CaP nanocrystals on collagen fibers in the 

bone matrix is mediated by ECM non-collagenous proteins such as bone sialoprotein 

(BSP), osteonectin (ON), osteopontin (OP) and osteocalcin (OC) [12, 78, 124]. GLU 

sequences ranging from 2-10 residues in those proteins regulate nucleation and growth of 

CaP crystals on collagen fibers [124]. The objective of this study was to investigate the 

effect of calcium phosphate (CaP) deposition on aligned nanofibers surface-modified 

with a glutamic acid peptide (GLU) on osteogenic differentiation of rat marrow stromal 

cells (MSCs). In that regard, the peptide EEGGC consisting of two glutamic acids 
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terminated with a cysteine functional group at one end and two glycine residues at the 

other end was conjugated to low molecular weight polylactide macromer. The 

synthesized PLA-GLU polymer-peptide conjugate was blended with high molecular 

weight poly(lactide-co-glycolide) (PLGA) polymer and the blend was electrospun to 

form aligned nanofibers surface-modified with GLU peptide (GLU-NF). The GLU-NF 

microsheets were incubated in a modified simulated body fluid (SBF) for GLU-mediated 

nucleation and growth of CaP crystals on the fiber surface. To achieve a high CaP to fiber 

ratio, a layer-by-layer approach was used to improve the diffusion of calcium and 

phosphate ions inside the microsheets. The effect of GLU-mediated CaP deposition on 

aligned nanofibers on osteogenic differentiation of rat MSCs was investigated by 

cytochemical, mRNA expression, and immunocytochemical analysis. Results 

demonstrate that surface modification of nanofibers with GLU peptide dramatically 

increased nucleation and growth of CaP nanocrystals on the fiber surface, leading to 

significantly higher differentiation of MSCs and mineralized matrix formation. 

3.2 MATERIALS AND METHODS 

3.2.1. SYNTHESIS AND CHARACTERIZATION OF PLA-GLU CONJUGATE 

Cysteine-terminated EEGGC peptide was synthesized manually on Rink Amide 

NovaGel
TM

 resin (EMD Biosciences, San Diego, CA) in the solid phase and 

functionalized by the addition of a cysteine residue at the glycine end using a previously 

described procedure [125-127]. Briefly, the Fmoc-protected amino acid (6 equiv), N,N′-

di-isopropylcarbodiimide (6.6 equiv, DIC, Acros, Pittsburgh, PA) and 

hydroxybenzotriazole (12 equiv, HOBt, Acros) were added to 100 mg resin and swelled 

in N,N-Dimethylformamide (DMF, Acros). Next, 0.2 mL of 0.05 M N,N-
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dimethylaminopyridine (DMAP, Acros) was added to the mixture and the coupling 

reaction was allowed to proceed for 4-6 h at 30ºC with orbital shaking. The resin was 

tested for the presence of unreacted amines using the Kaiser reagent [128]. After coupling 

the last amino acid, the EEGGC peptide was cleaved from the resin and precipitated in 

cold ether. The peptide was purified by preparative HPLC and characterized by Finnigan 

4500 Electro Spray Ionization (ESI) spectrometry (Thermo Electron, Waltham, MA) as 

described [127]. A similar procedure was used to synthesize EEGGKC peptide.  

L-lactide (LA; >99.5% purity; Ortec, Easely, SC) monomer was dried under 

vacuum at 40°C for at least 12 h prior to the reaction. Low molecular weight poly(L-

lactide) (LMW-PLA) was synthesized by ring-opening polymerization of LA monomer 

as previously described [125, 129]. Diethylene glycol (DEG, Fisher, Waltham, MA) and 

tin (II) 2-ethylhexanoate (TOC, Sigma-Aldrich) were used as the polymerization initiator 

and catalyst, respectively. The molar ratios of DEG:TOC and LA:DEG were 20:1 and 

10:1, respectively. After the reaction, double precipitation in two non-solvents, diethyl 

ether and hexane, was used to fractionate and isolate the LMW-PLA [125]. The 

synthesized polymer was characterized by gel permeation chromatography (GPC) and 

1
H-NMR as described [125]. Next, the LMW-PLA chain was terminated with an 

acrylamide group by reaction with acryloyl chloride (Ac, Sigma-Aldrich). In a typical 

reaction, 20 g LMW-PLA was dissolved in 150 mL dichloromethane (DCM, Acros) 

under dry nitrogen atmosphere. After cooling to 5°C, 0.6 mL Ac and 1.55 mL 

triethylamine (TEA, Sigma-Aldrich), each dissolved in DCM, were added drop-wise to 

the reaction with stirring. The reaction continued for 6 h on ice followed by 12 h under 

ambient conditions. After the reaction, solvent was removed and residue was dissolved in 
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anhydrous ethyl acetate to precipitate and remove the byproduct triethylamine 

hydrochloride. The Ac-PLA product was precipitated twice in hexane and cold ether, and 

dried in vacuum. The     and polydispersity index of the Ac-PLA were 5.3 kDa and 1.2, 

respectively.  

EEGGC peptide was conjugated to Ac-PLA by Michael addition reaction between 

the cysteine’s sulfhydryl group on the peptide and the acrylate group on the polymer to 

produce the PLA-GLU conjugate. Briefly, the peptide dissolved in sodium borate buffer 

(pH 8.5), was added to a solution of Ac-PLA in DMF (2:1 peptide:Ac-PLA molar ratio) 

and allowed to react for 12 h at 30°C in an orbital shaker. The solution was then dialyzed 

(MW cutoff 3.5 kDa, Spectrum Laboratories, Rancho Dominquez, CA) against distilled 

deionized (DI) water and lyophilized to obtain the dry PLA-GLU conjugate. The 

chemical structure of the conjugate was characterized by 
1
H-NMR. 

3.2.2 PLGA/PLA-GLU FIBER SPINNING 

PLGA sample (Durect, Pelham, AL) was a 50/50 copolymer of D,L-lactide and 

glycolide monomers with intrinsic viscosity of 1.1 dL/g and weight average molecular 

weight of 105 kDa. A blend of 10 wt% high molecular weight PLGA and 1.5 wt% PLA-

GLU was dissolved in 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP, VWR, West Chester, 

PA) solvent. A programmable KDS100 syringe pump (KD Scientific, Holliston, MA) 

was used to transfer and inject the polymer solution from a 1 mL syringe through a 21-

gauge needle. The needle was connected to the positively charged Pt electrode of a high 

voltage power supply (ES40P-5W/DAM, Gamma High Voltage Research). A custom-

built aluminum rotating wheel (20 cm diameter and 5 mm thickness), powered by a high-

speed DC motor ((2M0578, Dayton Electric, Niles, IL) and connected to the ground 
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electrode of the power source, was used to collect the aligned fibers [17, 130]. The 

rotating collector was placed 7.5 cm below the needle, with the edge of the wheel facing 

the needle. The previously optimized electrospinning conditions of 1.0 mL/h injection 

rate, 20 kV electrical potential, and needle-to-collector distance of 7.5 cm were used [93]. 

A rotation speed of 1200 rpm was used to produce aligned PLGA/PLA-GLU fibers, 

hereafter denoted by GLU-NF. 

3.2.3 CHARACTERIZATION OF GLU-CONJUGATED NANOFIBERS 

Scanning electron microscopy (SEM) was used to image the nanofibers. After 

coating with gold (Polaron sputter coater, Quorum Technologies, New Haven, UK) at 20 

mA for 45 sec, the fiber mesh was attached to a SEM stub and imaged with a Field 

Emission Scanning Electron Microscope (FESEM, Carl Zeiss Microscopy, Hillsboro, 

OR) at an accelerating voltage of 8 kV. SEM images were analyzed with ImageJ software 

(National Institutes of Health, Bethesda, MD) to determine the average fiber size. 

To determine surface coverage of GLU peptide on aligned nanofibers, EEGGKC 

peptide (GLUK) containing a lysine residue between the glycine and cysteine residues 

was synthesized and conjugated to LMW-PLA. After electrospinning, the fibers were 

fluorescently labeled with fluorescein isothiocyanate (FITC, Sigma-Aldrich) in 5 mg/mL 

Dulbecco’s phosphate-buffered saline (PBS, Cellgro, Herndon, VA) for 4 h at ambient 

conditions. FITC, due to its size, reacts only with free lysine amine group of GLUK on 

the fiber surface. Therefore, assuming addition of lysine to EEGGC peptide did not 

significantly change the peptide surface density, the FITC fluorescent intensity was 

related to GLU density on the fiber surface. FITC-labeled GLUK-conjugated nanofibers 

were imaged with an inverted fluorescent microscope (Nikon Eclipse Ti-ε, Nikon, 
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Melville, NY). Next, the labeled nanofibers were dissolved in DMSO and fluorescent 

intensity was quantified with a Synergy HT plate reader (Bio-Tek, Winooski, VT) at 

emission and excitation wavelengths of 520 and 495 nm, respectively. Knowing mass and 

average size of the fibers, the intensities were converted into mass per unit surface area 

using a calibration curve generated by measuring the fluorescent intensity of solutions 

with known concentration of FITC in dimethylsulfoxide (DMSO, Sigma-Aldrich). PLGA 

nanofibers without EEGGKC peptide dissolved in DMSO were used as negative control. 

3.2.4 CaP NUCLEATION AND GROWTH ON GLU-NF MICROSHEETS 

GLU-NF microsheets, approximately 25 µm thick, were incubated in a modified 

10-fold concentrated simulated body fluid (m10SBF) [106]. Briefly, the stock solution of 

10SBF was prepared by dissolving sodium chloride (NaCl), potassium chloride (KCl), 

calcium chloride monohydrate (CaCl2• H2O), magnesium chloride hexahydrate (MgCl2• 

6H2O), sodium bicarbonate (NaHCO3), and monosodium phosphate (NaH2PO4), all 

purchased from Fisher, in DDI water. The final pH of 10SBF solution was 4.2. Next, 60 

mM solution of NaHCO3 was added to 10SBF stock solution to reach physiological pH 

of 7.4. Then, the suspension was centrifuged and filtered (220 nm pore-size) prior to 

incubation. The modified-10SBF (m10SBF) solution was transparent after filtration, 

containing no CaP crystals when incubated with GLU-NF microsheets. During 

incubation, the containers were sealed with Parafilm to prevent a change in solution pH 

by CO2 diffusion. The incubation solution was changed every 6 h to replenish calcium 

and phosphate components. At each time point, fiber sheets were washed with DI water 

and dried at ambient conditions. 

In the layer-by-layer approach, the first GLU-NF microsheet, approximately 5 µm 
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thick, was electrospun on a 12 mm circular glass coverslip (VWR, Bristol, CT). Next, the 

microsheet was incubated in m10SBF for the prescribed time, washed with DI, and dried. 

After drying, the second GLU-NF layer was electrospun directly on the first layer. The 

bilayer sheet was incubated in m10SBF for a prescribed time, washed with DI, and dried. 

This layer-by-layer process was repeated five times to produce a 26±2 μm thick 

mineralized multilayer GLU-NF circular sheet (12 mm diameter). The multilayer 

approach improved diffusion of calcium and phosphate ions inside the fiber sheet when 

incubated in m10SBF solution. 

The mineralized microsheets were imaged with FESEM as described above. The 

calcium to phosphate ratio of the microsheets was measured by an energy-dispersive X-

ray spectrometer (EDS) connected to FESEM at an accelerating voltage of 15 kV. The 

structure of CaP crystals on GLU-NF microsheets was determined by Wide-Angle X-Ray 

Diffraction (XRD) using a Philips diffractometer with CuKα radiation source at 30 kV 

(Model 405S5, Rigaku, Japan). The scanning range was from 10 to 50
o
 with a step size of 

0.05
o
. The water wettability of GLU-NF microsheets before and after mineralization was 

measured with a contact angle goniometer (Model DSA-20E, Kruss, Germany). A 10 l 

drop of DI water was applied to the fiber surface, photographed immediately and contact 

angle (θ) was calculated from the height (h) and breadth (b) of the drop according to 

θ=arctan (2h/b) [131]. 

The amount of CaP nucleation on the microsheets was measured using a 

QuantiChrom calcium assay (Bioassay Systems, Hayward, CA) according to 

manufacturer’s instructions. Calcium content of the microsheets (0.3 mg) was dissolved 

in 0.4 mL of 1M HCl. Next, 5 μL aliquot of the suspension was added to 200 μL of the 
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kit working solution. After 3 min incubation, absorbance was measured on a Synergy HT 

plate reader at a wavelength of 612 nm. Measured intensities were correlated to the 

equivalent amount of Ca
2+

 using a calibration curve constructed with reference CaCl2 

solutions (zero to 200 μg/mL concentration). Total mineralized deposit of each sample 

was determined from the measured calcium contents at each time point (2, 4, 6, 12, and 

24 hours) and the CaP ratios from EDS measurements, and divided by the fiber mass to 

find percent CaP. Tensile modulus of the samples was measured with a Rheometrics 

Dynamic Mechanical Analyzer (RSA III DMA, Piscataway, NJ) with a strain rate of 

0.033/s at ambient conditions. Samples were cut to dimensions of 20 x 5 mm and the 

maximum allowed strain was set at 160%. Thickness and width of the samples were 

measured with a micro-caliper (Mitutoyo, Aurora, IL) and modulus was calculated as the 

slope of the linear region of the stress-strain curve. 

3.2.5 CELL ISOLATION AND SEEDING 

MSCs were isolated from the bone marrow of 6-8 weeks-old male Wistar rats as 

described [125, 127, 132]. Cell isolations were performed under a protocol approved by 

the Institutional Animal Care and Use Committee of the University of South Carolina. 

The marrow was flushed with 20 mL of cell isolation medium which consisted of 

Dulbecco’s Modified Eagle’s Medium (DMEM; 4.5 g/L glucose with L-glutamine and 

without sodium pyruvate, Cellgro, Herndon, VA) and 10% Fetal bovine serum (FBS, 

Atlas Biologicals, Fort Collins, CO) supplemented with 100 units/mL penicillin (PN), 

100 μg/mL streptomycin (SP), 20 μg /mL fungizone (FG), and 50 μg /mL gentamicin 

sulfate (GS), all purchased from Sigma-Aldrich. The cell suspension was cultured in 

basal medium (DMEM supplemented with 10% FBS, 100 units/mL PN, 100 µg/mL SP, 
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50 µg/mL GS, and 250 ng/mL FG). Cultures were replaced with fresh medium at 3 and 7 

days to remove unattached cells. Cells were enzymatically lifted and used for cell culture 

experiments. For cell seeding, edges of the microsheets on 12 mm circular glass coverslip 

were coated with a medical-grade silicone sealant (Dow Corning, MI) to prevent 

separation of the mesh from coverslip. The construct was sterilized by ultraviolet (UV) 

radiation followed by immersion in 70% ethanol for 30 min and washing three times with 

sterile PBS. We and others have demonstrated that UV radiation followed by immersion 

in ethanol is an effective procedure for sterilizing nanofibers [89, 93, 133]. SEM images 

(a) and (b) in Figure 3.7 show the morphology of GLU-NF nanofibers before and after 

ethanol incubation and washing steps during sterilization, respectively; images (c) and (d) 

show the morphology GLU-NF/CaP50 nanofibers before and after sterilization. The 

images in Figure 3.7 indicate that the sterilization procedure had no visible effect on the 

alignment or size of the fibers (images a and b) and attachment of CaP deposits to the 

fiber surface (images c and d). After conditioning the fiber mesh in basal medium for 1 h, 

each sample was seeded with 60 µL MSC cell suspension (1.7x10
6
 cells/mL; 1x10

5
 

cells/cm
2
) in basal medium. After incubation for 24 h for cell attachment, the medium 

was replaced with osteogenic medium (basal medium supplemented with 100 nM 

dexamethasone, 50 µg/mL ascorbic acid, 10 mM ß-glycerophosphate) and cultured in a 

humidified 5% CO2 incubator for up to 28 days. MSCs seeded on GLU-NF/LBL/CaP200 

microsheets and incubated in basal medium without osteogenic factors (GLU-

NF/LBL/CaP200-BM group) were used as the negative control group. To determine cell 

viability, MSCs seeded on the microsheets were stained with Acetomethoxy derivative of 

calcein (cAM, Life Technologies, Grand Island, NY) and ethidium homodimer (EthD, 
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Life Technologies) to image live and dead cells, respectively. Stained samples were 

imaged with a Nikon Eclipse Ti-ε inverted fluorescent microscope. Cell viability was 

quantified by dividing the image into smaller squares and counting the number of live 

and dead cells manually. 

3.2.6 OSTEOGENIC DIFFERENTIATION OF MSCs ON CaP-DEPOSITED GLU-NF 

MICROSHEETS 

At each time point (7, 14, 21, and 28 days), cell-seeded nanofibers were washed 

with serum-free DMEM for 8 h to remove serum proteins, followed by washing with 

PBS and lysed with 10 mM Tris supplemented with 0.2% triton in PBS. The lysed 

samples were used for measurement of DNA content, ALPase activity and calcium 

content. Double-stranded DNA content, ALPase activity and calcium content of the 

samples were measured with Quant-it PicoGreen assay (Invitrogen), QuantiChrom 

ALPase assay (Bioassay Systems) and QuantiChrom Calcium Assay (Bioassay Systems), 

respectively, as described [134]. To determine extent of mineralization of the samples, 

the measured intensities at time zero, used as baseline, were subtracted from those at days 

7-28 to account for the deposited CaP prior to cell seeding. The measured ALPase 

activities and calcium contents were normalized to cell numbers by dividing to DNA 

contents at each time point.  

3.2.7 IMMUNOFLUORESCENT STAINING 

For immunofluorescent staining, cell-seeded microsheets were washed twice in 

PBS and fixed with 4% paraformaldehyde (Sigma-Aldrich) at 4°C for 12 h. Next, 

samples were permeabilized with 0.1% Triton X-100 and 100 mM glycine in PBS for 1 h 

and blocked with 1.5% BSA and 0.5 mM glycine in PBS for 2 h. Then, samples were 
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incubated with primary antibodies in PBS containing 1% BSA for 24 h at 4°C according 

to manufacturer’s instructions. Primary antibodies from Santa Cruz Biotechnology (Santa 

Cruz, CA) included mouse anti-rat OP (1:100 dilution), rabbit anti-rat OC (1:100 

dilution), and goat anti-rat Pecam-1 (1:50 dilution). After washing with PBS, samples 

were incubated with the secondary antibody (1:100 dilution) in blocking buffer for 2 h at 

ambient conditions. Secondary antibodies from Santa Cruz Biotechnology included 

donkey anti-mouse FITC-conjugated IgG, donkey anti-rabbit Texas-red conjugated IgG, 

and donkey anti-goat Texas-red conjugated IgG. It should be noted that each sample was 

stained with 4,6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich) to image the cell 

nuclei and one of the antibodies for OC, OP, or Pecam-1. Secondary antibodies without 

the primaries were used as negative controls. For observation of cell morphology, cell-

seeded GLU-NF microsheets were incubated with 0.16 µM Alexa Fluor® 594 phalloidin 

(Invitrogen) and 300 nM DAPI for 30 min at ambient conditions to stain the cell actin 

filaments and nuclei, respectively. The stained samples were imaged with a Nikon 

Eclipse Ti-ε inverted fluorescent microscope to observe cell morphology or expression 

pattern of the proteins with the same exposure time and light intensity. 

3.2.8 mRNA ANALYSIS OF MSCs ON CaP-DEPOSITED GLU-NF MICROSHEETS 

At each time point (7, 14, 21, and 28 days), total cellular RNA was isolated using 

TRIzol (Invitrogen) as described [134]. 1µg of the extracted purified RNA was subjected to 

cDNA conversion using Promega Reverse Transcription System (Madison, WI). The 

obtained cDNA was subjected to real time quantitative polymerase chain reaction (rt-

qPCR) amplification with appropriate gene specific primers. The expression level of 

ribosomal protein S16 was used as the endogenous control. Primers for real-time PCR 
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analysis were designed and selected using Primer3 web-based software as described [125, 

135]. Real-time PCR (RT-qPCR) was performed to analyze differential expression of OP, 

ALPase, OC, Collagen type I (Col-1), Pecam-1 and Flk-1  genes with SYBR green 

RealMasterMix (Eppendorf, Hamburg, Germany) using Bio-Rad CXF96 machine (Bio-

Rad, Hercules, CA). Forward and reverse primers, shown in Table 1, were synthesized by 

Integrated DNA technologies (Coralville, IA). The designed primer sequences 

corresponded closely to the previously reported sequences for OP, ALPase, OC, Col-1, 

Pecam-1 and Flk-1 genes in rat MSCs [136, 137]. Relative gene expression levels were 

quantified by the 2^–ddCT method as described [138, 139]. Relative gene expressions were 

expressed as fold difference compared with that at time zero. 

Table 1 Forward and reverse sequences of the PCR primers. 

 
Genes                                   Forward Primer                                             Reverse Primer 

ALPase           5′-CCT TGA AAA ATG CCC TGA AA-3′     5′-CTT GGA GAG AGC CAC AAA GG-3′ 

Osteocalcin     5′-AAA GCC CAG CGA CTC T-3′                 5′-CTA AAC GGT GGT GCC ATA GAT-3′ 

Osteopontin     5′-GAC GGC CGA GGT GAT AGC TT-3′    5′-CAT GGC TGG TCT TCC CGT TGC-3′ 

Col-I                5′-TGC CGA TGG CGC TAT C-3′                 5′-CAA GGG CCG GGG TGA CGC GGG-3′ 

PECAM-1       5′-CGA AAT CTA GGC CTC AGC AC-3′     5′-CTT TTT GTC CAC GGT CAC CT-3′ 

Flk-1               5′-TAG CGG GAT GAA ATC TTT GG -3′     5′-GGG GTG AGG ATG ACC GTG TA-3′ 

S16                  5′-AGT CTT CGG ACG CAA GAA AA-3′     5′-AGC CAC CAG AGC TTT TGA GA-3′ 

 

3.2.9 STATISTICAL ANALYSIS 

Data are expressed as means±standard deviation. All experiments were done in 

triplicate. Significant differences between groups were evaluated using a two-tailed 

Student's t-test. A value of p<0.05 was considered statistically significant. 

3.3 SIMULATION METHOD 

Dissipative Particle Dynamics (DPD) method was used to simulate surface and 

bulk distribution of PLGA and PLA-GLU in the nanofibers by course-graining the 



 

41 

macromers into different set of atoms or beads as described [140, 141]. Bead types 

included lactide, glycolide, acrylate, amino acid backbone chain, cysteine side group, and 

glutamic acid side group. The position and velocity of the beads at each time point were 

determined by solving equations of motion of the beads using the DPD force function. 

The force acting on each bead ( if ) is given by [142, 143] 
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where 
ijr  is the vector joining bead i to j, 

ije  and 
ijr  are the unit vector in the direction of 

ijr and the magnitude of 
ijr  in DPD  units, respectively. DPD length scale cr was 7.87 Ǻ 

and the values of 
ijα  were determined from the Flory-Huggins interaction parameters ( ij

) as described [140, 144]. The Flory−Huggins parameters were calculated via atomistic 

molecular dynamics simulation (Forcite and Amorphous Cell modules, Materials Studio 

v5.5, Accelrys) using COMPASS, which is an ab initio force field optimized for 

condensed-phase systems [145]. The randomly seeded macromers in a cylindrical 

template were simulated with dimensionless time step of 0.05 and over 200000 time 
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steps.  The repulsive boundary condition applied on the fiber surface to maintain 

cylindrical geometry was equal for all beads, which did not affect bead distribution. DPD 

simulations were performed using Mesocite module (Materials Studio v5.5).  

3.4. RESULTS 

3.4.1 CHARACTERIZATION OF CaP-DEPOSITED GLU-NF MICROSHEETS 

GLU peptide was covalently attached to Ac-PLA by the reaction between the 

acrylate group of Ac-PLA and cysteine residue of the peptide, as shown in Figure 3.1a. 

1
H-NMR spectrum of Ac-PLA (inset) and PLA-GLU are shown in Figure 3.1b. Chemical 

shifts with peak positions at 2.14, 2.32 and 4.57 were attributed to methylene and methine 

hydrogens of glutamate residues; that at 4.16 was attributed to methylene hydrogens of 

glycine residues; those at 5.19 and 8.03 were attributed to amine and amide hydrogens, 

respectively; and those at 3.11 and 3.77 were attributed to methylene and methine 

hydrogens of cysteine residue, respectively. Chemical shifts with peak positions at 1.78 

and 5.35 ppm were attributed to methyl and methine hydrogens of lactide units, 

respectively; that at 3.64 ppm was attributed to methylene hydrogens of DEG in Ac-PLA. 

Chemical shifts with peak positions in the 6.04-6.48 ppm range were attributed to vinyl 

hydrogens of the acrylate end groups of Ac-PLA. Ratio of the peaks at 6.04-6.48 ppm 

(due to hydrogens of acrylate) to that at 5.35 ppm (due to hydrogens of lactide) was 

related to acrylate/LA molar ratio in Ac-PLA macromer. Number of peptides in the 

conjugate was determined using the acrylate/LA molar ratio before and after conjugation. 

Average number of peptides per conjugate was 1.3.  
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Figure 3.1 (a) Reaction scheme for synthesis of PLA-CGGEE (PLA-GLU) conjugate. (b) 
1
H-NMR spectrum of PLA-GLU macromer; the inset in (b) is NMR spectrum of Ac-

PLA. NMR peaks labeled with LA, AA, and Ac represent lactide, amino acid, and 

acrylate peaks, respectively. 

 

Concentration of PLA-GLU in the fibers ranged from zero to 2.5 mM. Average 

size of the aligned fibers was 200 ±60 nm. Image of PLGA/PLA-GLUK fibers, shown in 

Figure 3.2a, showed intense fluorescent emission from FITC conjugation to the fiber 

surface. FITC-labeled fibers were dissolved in DMSO and fluorescent intensity was 

quantified and related to GLU peptide concentration, as shown in Figure 3.2b. GLU 

density on the fiber surface increased linearly with PLA-GLU concentration up to 2 mM, 

followed by a slight, statistically not significant increase for higher concentrations. As 
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PLA-GLU concentration was increased from 0.6 mM to 1.2, 2.0, 2.3 and 2.5 mM, GLU 

surface density increased from 5.4±1.2 to 12.3±0.9, 20.3±2.5, 20.7±2.7, and 21.1±2.3 

nmol/cm
2
, respectively. DPD simulation of PLGA/PLA-GLU nanofibers to predict GLU 

distribution on the fiber surface in a 30 x 20 x 20 
cr simulation box without HFIP 

electrospinning solvent is shown in Figure 3.2c. In the figure, beads other than GLU (red 

color) are shown with grey color for clarity. The percentage of GLU groups on the fiber 

surface without and with 5% HFIP solvent was 82% and 83%, respectively, and the 

average number of GLU peptides on the surface was 0.16 GLU/nm
2
.  

 

 

 

Figure 3.2 (a) Fluorescent image of FITC conjugated PLA-GLUK nanofibers with 20 

nmol/cm
2
 GLUK peptide surface density. (b) Effect of PLA-GLUK peptide concentration 

in the electrospinning solution on GLUK peptide surface density on aligned nanofibers. 

(c) DPD simulation of PLGA/PLA-GLU showing localization of GLU groups (red) on 

the surface of nanofibers (grey) within the simulation box. Error bars in (a) and (b) 

correspond to mean ±1 SD for n = 3. 

 

The schematic diagram of apatite deposition on 2-mer Glutamic acid peptide 

conjugated nanofibers in simulated body fluid is represented in Figure 3.3. Typical low 

magnification images of nanofibers (without GLU conjugation) and GLU-NF after 

incubation in m10SBF for 24 h are shown in Figures 3.4a and 3.4b, respectively. Figures 

3.4c-f show higher magnification images of GLU-NF after incubation in m10SBF for 6, 
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24, 48 h, and LBL 24 h, respectively. CaP crystals nucleated from the fiber surface after 6 

h incubation can be seen in Figure 3.4c. As incubation time increased to 24 and 48 h, 

number of CaP crystals increased significantly, as shown in Figures 3.4d and 3.4e, 

respectively. Figure 3f shows uniform distribution of CaP crystals on fibers within as 

well as on the surface of microsheets. However, average size of the crystals did not 

change with incubation time and remained below 100 nm. The schematic diagram of 

apatite deposited GLU-NF fabrication by layer-by-layer approach can be seen in Figure 

3.5a. In addition, Figure 3.5b and 3.5c shows the low and high magnification image of 5 

layers apatite/GLU-NF cross-section, respectively. The average thickness of CaP 

nucleated 5 layers GLU-NF is 25±1 µm. 

 

 

The effect of GLU conjugation and CaP deposition on water wettability of the 

microsheets is shown in Figure 4a-c. Water contact angel decreased to 85±3º (Figure 

3.6b) from 112±3º (Figure 3.6a) after blending PLGA with PLA-GLU. The mineralized 

microsheets were completely wetted by water (zero contact angle, Figure 3.6c). The 

 

Figure 3.3 The schematic diagram of apatite deposition on 2-mer Glutamic acid peptide 

conjugated nanofibers in simulated body fluid. 
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measured contact angles were consistent with previously reported values for PCL 

modified with carboxylic acid groups [146, 147]. The amount of CaP crystals (based on 

fiber mass) deposited on NF (burgundy), GLU-NF (blue), and GLU-NF/LBL (brown) 

microsheets with incubation time is shown in Figure 3.6d. As incubation time increased 

from 2 to 4, 6, 12, and 24 h, amount of CaP deposited on NF microsheets changed from 

2.8±2.2% to 8.7±0.9, 8.6±2.5, 11.6 ±1.0, and 12.1±2.5%, respectively, while the amount 

deposited on GLU-NF microsheets increased from 13.3±0.7% to 28.0±3.8, 29.4±4.5, 

37.0±5.1, and 50.0±5.6%. Amount of CaP deposited on NF microsheets did not increase 

significantly with incubation time while CaP deposition on GLU-NF sheets increased 

significantly (indicated by one star). Interestingly, amount of CaP deposited with the LBL 

approach (24 h incubation in each layer) increased to 203±5% compared to 50.0±5.6% 

for a single 25 µm layer. These results indicated that the GLU peptide provides sites for 

nucleation of CaP crystals [148] and CaP deposition is limited by the diffusion of 

calcium/phosphate ions to the interior part of GLU-NF microsheets. 
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Figure 3.4 SEM images of the microsheets after incubation in m10SBF medium. Images 

(a) and (b) are low magnification images of PLGA and PLGA/PLA-GLU microsheets 

after incubation in m10SBF for 24 h, respectively. Images (c), (d), and (e) are for 

PLGA/PLA-GLU microsheets after 6, 24, and 48 h incubation in m10SBF, respectively. 

Image (f) is for PLGA/PLA-GLU microsheets deposited with CaP crystals in a layer-by-

layer (LBL) approach. Scale bars in (a-b) and (c-f) represent 2 µm and 200 nm, 

respectively. 
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Tensile modulus and toughness of GLU-NF microsheets are given in Figures 3.6e 

and 3.6f, respectively. Tensile modulus increased significantly with extent of CaP 

deposition on the fibers, especially in the LBL approach. Tensile modulus increased from 

260±10 MPa for GLU-NF to 330±17, 540±15, and 880±40 MPa for GLU-NF with 30% 

(6 h incubation), 50% (24 h incubation), and 200% (LBL) CaP deposition. There was a 

sharp increase in toughness when CaP deposition was increased to 50% and 200%, 

indicating overlap/fusion of crystals on the fibers and formation of a CaP-NF network.  

 

Figure 3.5. Schematic diagram of apatite deposited GLU-NF fabrication by layer-by-

layer approach (a), low magnification image of 5 layers apatite/GLU-NF cross-section 

(b), high magnification image of 5 layers apatite/GLU-NF cross-section.  
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The mechanical measurements are consistent with previous results for CaP-deposited 

PCL NFs, surface modified with carboxylic acid groups [149]. XRD spectra of NF (blue) 

and GLU-NF (green) microsheets after 24 h incubation in m10SBF are compared in 

Figure 4g with that of synthetic apatite nanocrystals (red, Berkeley Biomaterials, 

Berkeley, CA). CaP crystals deposited on GLU-NF microsheets showed the characteristic 

 

 

 

Figure 3.6 Shape of a water droplet on PLGA NF (a), PLGA/PLA-GLU NF before (b) 

and after incubation in m10SBF (c). All PLGA/PLA-GLU NF microsheets had zero 

water contact angle after incubation in m10SBF, irrespective of incubation time. The 

contact angles in (a), (b), and (c) were 112±3º, 85±3º, and zero, respectively. (d) Amount 

of CaP nucleation and growth (based on fiber mass) on PLGA fibers without GLU 

conjugation (NF, burgundy, 25 µm thick layer) and PLGA/PLA-GLU fibers (GLU-NF, 

blue, 25 µm thick layer) with incubation time in m10SBF. (e) and (f) are tensile modulus 

and toughness of PLGA/PLA-GLU fibers as a function of CaP amount deposited on the 

fibers, respectively. The brown bar in (d-f) is for PLGA/PLA-GLU microsheets produced 

in a 5-layer LBL approach (each layer 5 µm thick) incubated in m10SBF for 24 h. (g) 

Comparison of x-ray diffraction spectra of CaP crystals deposited on PLGA NF (NF/CaP, 

blue) and CaP crystals deposited on PLGA/PLA-GLU microsheets (GLU-NF/CaP50, 

green) after 24 h incubation in m10SBF with that of commercial HA nanocrystals (nHA, 

orange). Peaks centered at 25.8°, 31.8°, and 47° are characteristic diffraction peaks of 

apatite crystals. (h) EDS spectrum of CaP crystals nucleated and grown on GLU-

NF/CaP50 fibers (Ca:P =1.58). In (d-f), one star indicates statistically significant 

difference (s.d.; p<0.05) between the test group and control [NF in (d) and GLU-

NF/CaP0 in (e) and (f)]; two stars between multilayer and monolayer GLU-NF/CaP. 

Error bars in (d-f) correspond to means ± 1 SD for n = 3. 
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apatite peaks centered at 31.8
o
, 25.8

o,
 and 47

o
 [150] while NF sheets without GLU did not 

show those peaks. Ca/P ratio of the crystals was 1.58±0.1, based on the EDS spectrum of 

GLU-NF microsheets after 24 h incubation in m10SBF in Figure 4h, which was in the 

reported range of 1.4-1.7 for CaP crystals in the natural bone and close to 1.67 for 

synthetic apatite crystals [116]. Similar results were obtained for GLU-NF microsheets 

incubated in m10SBF for different times.  

3.4.2 DIFFERENTIATION OF MSCs ON CaP-DEPOSITED GLU-NF MICROSHEETS 

 

 MSCs were seeded on GLU-NF, GLU-NF with 30% (GLU-NF/CaP30), 50% (GLU-

NF/CaP50), and 200% (GLU-NF/LBL/CaP200) CaP content, and cultured in osteogenic 

medium for 28 days. MSCs seeded on GLU-NF/LBL/CaP200 with highest CaP content 

of 200% and incubated in basal medium was used as the negative control group (GLU-

NG/LBL/CaP200-BM) for biochemical, mRNA and immunocytochemical analysis. To 

observe the morphology of individual cells, MSCs were seeded on the microsheets at low 

density of 1500 cells/cm
2
 and incubated in osteogenic medium. Fluorescent images (a-d) 

of cell nuclei (blue) and cytoskeletal actin filaments (red) in Figure 3.9 show morphology 

of the MSCs seeded on GLU-NF (a), GLU-NF/CaP30 (b), GLU-NF/CaP50 (c), and 

GLU-NF/LBL/CaP200 (d) microsheets after two days of incubation. The images indicate 

that the seeded cells completely aligned with fiber direction even after CaP deposition. 

Inset images in Figure 3.9 show the corresponding morphology of MSCs with initial 

seeding density of 1x10
5
 cells/cm

2
 after 7 days of incubation in osteogenic medium. The 

seeded MSCs displayed an elongated morphology in the direction of the fibers for all CaP 

contents at higher density and longer incubation time. Images of live (green, cAM 

stained) and dead (red, EthD stained) MSCs two days after cell seeding at high density on 
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the microsheets, displayed in Supplementary Figure 3.8, showed >90% cell viability two 

days after cell seeding (1x10
5
 cells/cm

2
) and incubation in osteogenic medium. 

 

 

DNA content of MSCs cultured on GLU-NF/CaP microsheets is shown in Figure 

3.10a. DNA content of GLU-NF/LBL/CaP200-BM (light blue) incubated in basal 

medium, in the absence of osteogenic differentiation factors, increased slightly with 

incubation time while those incubated in osteogenic medium decreased significantly with 

time.  The cell density for CaP deposited microsheets on day 7 was significantly higher 

than that of GLU-NF, as indicated by a star in Figure 3.10a, consistent with previous 

 

 

Figure 3.7 SEM images of the microsheets after sterilization with by ultraviolet (UV) 

radiation followed by immersion in 70% ethanol for 30 min and washing three times with 

sterile PBS. Images (a) and (b) are PLGA/PLA-GLU microsheets before sterilization and 

after sterilization procedure. Images (c) and (d) are for PLGA/PLA-GLU microsheets 

after 24hincubation in m10SBF before sterilization and after sterilization, respectively. 

Scale bars in (a-b) and (c-f) represent 2 µm and 2 µm, respectively. 
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results for cell adhesion on mineralized nanofibers [116]. Cell number results suggested 

that the CaP deposited microsheets did not have a toxic effect on the seeded cells and the 

decrease in DNA content of MSC-seeded microsheets incubated in osteogenic medium 

was related to cell differentiation or the initial seeding density (see Discussion).  

 

 

 

 

 

 

 

Figure 3.8 Live (green) and dead (red) image of MSCs (1500 cells/cm
2
 initial density) 

seeded on GLU-NF (a), GLU-NF/CaP30 (b), GLU-NF/CaP50 (c), and GLU-

NF/LBL/CaP200 (d) microsheets after two days of incubation in osteogenic medium 

(scale bar is 100 µm).  
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ALPase activity of MSCs seeded on GLU-NF/CaP microsheets is shown in 

Figure 3.10b. ALPase activity of MSCs seeded on GLU-NF/LBL/CaP200-BM 

microsheets incubated in basal medium did not increase with time (light blue curve). 

ALPase activity of all other groups, incubated in osteogenic medium, peaked after 14 

days and returned to baseline level at day 28, consistent with previous reports [151]. 

ALPase activity increased significantly with amount of CaP deposition on the fibers. For 

example, peak ALPase activity of GLU-NF/CaP30, GLU-NF/CaP50, and GLU-

NF/LBL/CaP200 increased from 2400±200 to 3200±600 and 5100±400 IU/mg DNA, 

respectively, while that of GLU-NF was 1600±100 IU/mg. Mavis and collaborators 

 

 

Figure 3.9 Morphology of MSCs (1500 cells/cm
2
 initial density) seeded on GLU-NF (a), 

GLU-NF/CaP30 (b), GLU-NF/CaP50 (c), and GLU-NF/LBL/CaP200 (d) microsheets 

after two days of incubation in osteogenic medium (scale bar is 50 µm). The inset in each 

image shows the corresponding image of MSCs seeded on GLU-NF microsheets at 1x10
5
 

cells/cm
2
 density after 7 days of incubation in osteogenic medium (scale bar in the insets 

is 100 µm). In the images, cell nuclei and cytoskeletal actin are stained with DAPI (blue) 

and phalloidin (red), respectively. The arrow in the images shows direction of the aligned 

nanofibers. 
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reported that MC3T3-E1 pre-osteoblasts seeded on apatite-coated PCL fibers had higher 

ALPase activity compared to uncoated fibers [123]. Calcium content of MSCs seeded on 

CaP-deposited microsheets is shown in Figure 3.10c. All calcium measurements were 

subtracted from the amount at day 4 to remove the calcium due to CaP deposition prior to 

cell seeding. For all groups, extent of mineralization of the MSCs increased gradually 

from day 14 to 28 with GLU-NF/LBL/CaP200 having the highest mineralization after 28 

days of incubation in osteogenic medium. Mineral content of the MSCs seeded on GLU-

NF/LBL/CaP200-BM incubated in basal medium increased slightly with time, which 

could be related to the osteogenic effect of deposited CaP prior to cell seeding. For 

example, calcium content of MSC-seeded GLU-NF/LBL/CaP200 microsheets after 28 

days was 960±110 mg/mg DNA, while those of GLU-NF/LBL/CaP200-BM, GLU-NF, 

GLU-NF/CaP30, and GLU-NF/CaP50 were 130±20, 460±40, 580±40, and 760±80 

mg/mg DNA, respectively. 

Expression of osteogenic markers OP, ALPase, OC, Col-1, and vasculogenic 

markers Pecam-1 and Flk-1 with incubation time for MSC-seeded GLU-NF/CaP 

microsheets is shown in Figures 3.11a through 3.11f, respectively. For GLU-

NF/LBL/CaP200-BM control group incubated in basal medium, expression of OP, 

ALPase, OC, Pecam-1, and Flk-1 did not change significantly with time, while there was 

a significant increase in Col-1 expression. However, the increase was significantly less 

than those microsheets incubated in osteogenic medium (see Figure 3.11d). ALPase 

mRNA expressions for all groups followed their corresponding ALPase activity shown in 

Figure 3.10b, peaking at day 14 and returning to baseline level at day 28 [152]. mRNA 

expression of OP, OC, and Col-1 increased gradually with incubation time. Expression of 
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osteogenic marker OP was was highest for GLU-NF/LBL/CaP200, as shown in Figure 

3.11a. For example, OP expression of GLU-NF/LBL/CaP200 at day 28 was 68±4 while 

those of GLU-NF, GLU-NF/CaP30, and GLU-NF/CaP50 was 16±2 and 25±3, 48±3, 

respectively. Expression of osteogenic markers OC and Col-1 followed a similar trend 

with GLU-NF/LBL/CaP200 having the highest expression (420±30). For example, OC 

expression of GLU-NF, GLU-NF/CaP30, GLU-NF/CaP50, and GLU-NF/LBL/CaP200 at 

day 28 was 180±10, 250±30, 300±20, and 420±30, respectively, while that of Col-1 was 

6±1, 11±2, 14±1, and 16±1. Expression of Pecam-1 and Flk-1 of the MSCs did not 

change significantly with incubation time and CaP deposition, which indicated that CaP 

deposition on the fibers mainly affected osteogenic expression. Pecam-1 and Flk-1 

expression for GLU-NF/LBL/CaP200 was slightly higher than the other groups at day 28 

(see Figures 3.11e and 3.11f). 

Figure 3.12 shows immunostained images of MSCs seeded on GLU-NF/CaP 

microsheets. Columns a through c in Figure 3.12 are for OC (red), OP (green), and 

Pecam-1 (red), respectively, and rows 1-5 are for GLU-NF/LBL/CaP200-BM incubated 

in basal medium as negative control, GLU-NF, GLU-NF/CaP30, GLU-NF/CaP50 and 

GLU-NF/LBL/CaP200 after 28 days of incubation in osteogenic medium. GLU-

NF/LBL/CaP200-BM did not stain for OC, OP, or Pecam-1 markers (see first row). 

GLU-NF group showed weak staining for all three markers while the CaP deposited 

GLU-NF groups showed moderate to strong staining for osteogenic markers OC and OP. 

There was a slight increase in Pecam-1 staining for GLU-NF/LBL/CaP200 group, 

consistent with the slight increase in mRNA expression in Figure 3.11e. Overall, GLU-

NF/LBL/CaP200 group showed highest staining for OC, OP, and Pecam-1. Taken 
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together, results in Figures 3.10-3.12 demonstrate that the extent of osteogenic 

differentiation of MSCs seeded on GLU-NF microsheets depended strongly on the 

amount of deposited CaP on the fibers prior to cell seeding. 

 

 

 

 

Figure 3.10 DNA content (a), ALPase activity (b), and calcium content (c) of MSCs 

seeded on GLU-NF/CaP microsheets and incubated in osteogenic medium for up to 28 

days. Experimental groups include GLU-NF without incubation in m10SBF (control, 

blue), GLU-NF/CaP30 (red), GLU-NF/CaP50 (green), and GLU-NF/LBL/CaP200 

(purple) incubated in osteogenic medium. GLU-NF/LBL/CaP200-BM group was 

incubated in basal medium as the negative control (light blue). In the figures, one star 

indicates statistically significant difference (s.d.; p<0.05) between the test group and 

GLU-NF for the same time point; two stars between the test time point and the previous 

time in the same group; three stars between GLU-NF/LBL/CaP200 and other GLU-

NF/CaP groups for the same time point. Error bars correspond to means ± 1 SD for n = 3. 
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Figure 3.11 mRNA expression levels (as fold difference) of osteopontin (a, OP), alkaline 

phosphatase (b, ALPase), osteocalcin (c, OC), collagen type-1 (d, Col-1), platelet 

endothelial cell adhesion molecule (e, Pecam-1), and Flk-1 (f) for MSCs seeded on GLU-

NF/CaP microsheets and incubated in osteogenic medium for up to 28 days. 

Experimental groups include GLU-NF without incubation in m10SBF (blue), GLU-

NF/CaP30 (red), GLU-NF/CaP50 (green), and GLU-NF/LBL/CaP200 (purple). GLU-

NF/LBL/CaP200-BM group was incubated in basal medium as the negative control (light 

blue). In the figures, one star indicates statistically significant difference (s.d.; p<0.05) 

between the test group and GLU-NF for the same time point; two stars between the test 

time point and the previous time in the same group; three stars between GLU-

NF/LBL/CaP200 and other GLU-NF/CaP groups for the same time point. Error bars 

correspond to means ± 1 SD for n = 3. 
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Figure 3.12 Expression pattern of osteogenic markers osteocalcin (a, OC, red, first 

column), osteopontin (b, OP, green, second column), and vasculogenic marker Pecam-1 

(c, red, third column) for MSCs seeded on GLU-NF/CaP microsheets after 28 days 

incubation in osteogenic medium. Experimental groups include GLU-NF without 

incubation in m10SBF (control), GLU-NF/CaP30, GLU-NF/CaP50, and GLU-

NF/LBL/CaP200. Expression pattern of MSCs in GLU-NF/LBL/CaP200-BM negative 

control group, which was incubated in basal medium, is shown in the first row. Cell 

nuclei in the images are stained with DAPI (blue). 

 

3.5 DISCUSSION 

The simulated percentage of GLU groups on the fiber surface was >80%. 

Although diameter of the simulated fibers was significantly less than the actual fiber 

diameter, simulation results indicated that a major fraction of GLU peptides localized to 

the fiber surface. Consistent with simulation results, Gentsch and collaborators 
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functionalized PLGA electrospun nanofibers by blending with poly(lactic acid)-block-

CGGRGDS conjugate and reported a decrease in water contact angle on the fiber surface 

with increasing concentration of  the conjugate [153]. It should be noted that the 

simulations were performed in the absence of electric field, thus the actual GLU 

percentages on the fiber surface may be higher than the predicted values. Sun and 

collaborators used the electric field applied during electrospinning to induce segregation 

of peptides to the fiber surface with poly(ethylene oxide)-peptide conjugates [154]. The 

simulation results taken together with contact angle measurements in Figure 3.6a and 

fluorescence measurements of FITC labeled PLA-GLUK fibers in Figure 3.2b provide 

evidence for localization of a significant fraction of PLA-GLU to the fiber surface when 

blended with PLGA, to serve as nucleating sites for CaP deposition.  

 

 

Figure 3.13 The effect of initial seeding densities of 3x10
3
 (a) and 2.5x10

4
 cells/cm

2
 (b) 

on the microsheets on DNA content with incubation time in osteogenic medium. 
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Conjugation of GLU sequence reduced water contact angle on the fiber surface, 

as shown in Figure 3.6a-c, with zero contact angle after CaP deposition on the fibers. The 

finite water contact angle of <90° on GLU-NF fibers allowed nucleation and growth of 

CaP crystals on layers near the fiber surface but it limited penetration of water, calcium, 

and phosphate ions inside the microsheets. Consequently, when incubation time of GLU-

NF microsheets in m10SBF was increased from 24 to 48 h, there was little change in CaP 

content and tensile modulus (data not shown). When the LBL approach was used to 

produce CaP-deposited microsheets, there was a dramatic increase in CaP content from 

50±6 to 200±5%, as shown in Figure 3.6d, indicating that CaP nucleation and growth on 

GLU-NF fibers was controlled by diffusion of calcium/phosphate ions from the medium 

to inside the microsheets. It should be noted that the CaP content of LBL microsheets was 

between those of cancellous (160%) and cortical (310%) bone [155, 156] demonstrating 

that CaP contents as high as that of cortical bone can be achieved by reducing layer 

thickness. The LBL approach has been used to increase filler loading and stiffness of 

composites or fabricate highly ductile oppositely charged multilayered films [157, 158]. 

Li and collaborators observed increased CaP deposition on PCL microfibers by 

increasing the density of carboxylic acid groups on the surface by plasma treatment 

[159]. They also observed that CaP deposition increased by coating the surface of PCL 

microfibers with gelatin, presumably due to the carboxylic acid content of gelatin [87]. 

Our work demonstrates for the first time that the extent of CaP nucleation and growth on 

synthetic fibers, and in turn the fiber mechanical strength, can be controlled by incubation 

time in SBF or by GLU density on the fiber surface. 
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The tensile modulus and toughness of the microsheets dramatically increased with 

higher CaP contents of 50 and 200%, as shown in Figures 3.6e and 3.6f, respectively. 

Zhang et al. reported a decrease in tensile strength and elastic modulus of chitosan 

composite microfibers with the addition of HA nanocrystals (nHA) and collagen to the 

electrospinning solution [89]. Our results indicate that fiber size, CaP crystal size, and 

nucleation and growth of CaP crystals on the fiber surface contribute to the higher 

modulus and toughness of the microsheets. The GLU peptide initiateed nucleation of CaP 

crystals on the fiber surface. The nucleated CaP crystals continue to grow with incubation 

time and start to merge and fuse to form a network of fibers cross-linked with CaP 

crystals. We speculate that the higher toughness and modulus of microsheets with 50 and 

200% CaP content is related to the formation of CaP cross-linked network of fibers. 

DNA content of the MSCs seeded on GLU-NF/LBL/CaP200 microsheets 

incubated in osteogenic medium decreased significantly with time, as shown in Figure 

3.10a. However, the slight increase in DNA content of MSCs on GLU-NF/LBL/CaP200 

microsheets incubated in basal medium (light blue in Figure 3.10a) indicated that the 

microsheets did not have toxic effect on the seeded cells. We speculated that the decrease 

in cell number with incubation time in osteogenic medium was related to cell 

differentiation as well as the initial cell seeding density. The effect of initial seeding 

densities of 3x10
3
 and 2.5x10

4
 cells/cm

2
 on the microsheets on DNA content with 

incubation time in osteogenic medium is shown in Figures 3.13a and 3.13b, respectively. 

At relatively low initial density of 3000 cells/cm
2
 (Figure 3.13a), DNA content of the 

MSCs on the microsheets increased significantly for all time points in osteogenic medium 

and DNA content was relatively independent of the extent of CaP deposition prior to cell 
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seeding. As the initial cell density was increased to 2.5x10
4
 cells/cm

2
 (Figure 3.13b), 

DNA content increased in the first 7 days and then remained relatively constant (or 

increased slightly) for times between 7 and 28 days as the cells differentiated in 

osteogenic medium. With further increase in initial cell density to 1x10
5
 cells/cm

2
 (Figure 

6a), DNA content of the MSCs on the microsheets decreased significantly for all time 

points with incubation in osteogenic medium, but remained relatively unchanged in basal 

medium (light blue curve in Figure 3.10a). Images of live and dead MSCs two days after 

cell seeding on the microsheets, displayed in  Figure 3.8, show >90% cell viability two 

days after seeding in osteogenic medium, implying that the microsheets did not have a 

significant toxic effect on the seeded cells. The other possible reason for the decrease on 

DNA content might be the increasing cell surface area after cell adhesion and spread on 

the apatite nucleated aligned nanofibers. Figure 9 clearly shows that cells were 

completely spread along the fibers even after 7 days of culture in osteogenic media. The 

required surface area for proliferated cells adhesion is limited after cells completely cover 

the surface of the aligned nanofibers. Therefore, the proliferation slows down and the 

death of unattached cells becomes dominant due to the limited surface area. Taken 

together, these results demonstrate that  the change in DNA content of the MSCs seeded  

on the microsheets with incubation time depended on the initial cell seeding density, 

culture medium (osteogenic versus basal medium) and increase on the cell surface area 

after spreading on the fibers. Kim et al. investigated the effect of initial cell seeding 

density on poly(propylene fumarate) substrates on osteogenic expression of rat MSCs 

[160]. They reported higher level of mineralization and osteocalcin expression at higher 

cell densities of 7.5x10
4
 and 1.5x10

5
 cells/cm

2
. Zhou et al. investigated osteogenic 
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differentiation of umbilical cord stem cells on fiber-reinforced calcium phosphate 

scaffolds [161]. They reported increased osteogenic differentiation and mineral 

deposition on the scaffolds with increasing cell density from 1.5x10
4
 to 1x10

5
 cells/cm

2
. 

It appears that cell-cell contact plays a significant role in osteogenic differentiation of 

MSCs and other stem cells. Based on previous results, a relatively high seeding density of 

1x10
5
 cells/cm

2 
was used to investigate osteognic differentiation of rat MSCs on GLU-

NF microsheets.  

Biochemical, mRNA, and immunocytochemical results show that the extent of 

osteogenic differentiation and maturation of MSCs seeded on the microsheets increased 

with CaP deposition. This increase can be explained by the higher modulus as well as 

higher CaP content of GLU-NF microsheets prior to cell seeding.  

 These findings are consistent with prior results that matrix stiffness directs stem 

cell differentiation [162] and CaP content of the substrate affects osteogenesis [163]. 

Chaterjee et al. reported that ALPase activity and extent of mineralization of osteoblasts 

encapsulated in a polyethylene glycol hydrogel was modulated by matrix stiffness with 

400-fold increase in mineralized volume fraction as the matrix stiffness increased by 30 

fold [164]. Engler et al. demonstrated that MSCs seeded on stiffest gel matrices (34 kPa 

elastic modulus) showed 4-fold greater osteocalcin and the early transcriptional factor 

CBFa1 expression [165]. Lee et al. and Chen et al. observed an increase in ALPase 

activity and extent of mineralization of MSCs seeded on PCL/nHA nanofibers with HA 

content [116, 166]. Similarly, a significant increase in ALPase activity with HA addition 

was reported for MC3T3-E1 preosteoblasts seeded on PCL or PLLA fibers [88, 123, 

167]. Zhang et al. on the other hand did not observe an increase in osteogenic 
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differentiation of human fetal osteoblasts seeded on chitosan fibers with HA addition to 

the electrospinning solution [89]. Our results show that osteogenic differentiation of 

MSCs depends directly on the extent of CaP deposition on the nanofibers prior to cell 

seeding. The extent of osteogenic differentiation of MSCs may also depend on the 

connectivity of crystals with increasing CaP deposition. Bhumiratana et al. investigated 

nucleation and growth of mineralized matrix on silk-hydroxyapatite (HA) composite 

scaffolds seeded with human MSCs [168]. He reported that the initial HA content and its 

distribution acted as nucleation sites for new mineral formation, which in turn affected 

the connectivity of mineral deposition by MSCs. Although the effect of substrate 

modulus and CaP content on differentiation and mineralization MSCs has been studied 

extensively, there has been very few reports on the effect of CaP connectivity on the 

extent of mineralization by MSCs.  

The findings of this work demonstrate that GLU conjugation coupled with an 

LBL approach dramatically increase nucleation and growth of apatite-like nanocrystals 

on the surface of nanofibers, leading to CaP to fiber ratios >200%, tensile moduli close to 

1 GPa, and higher osteogenic differentiation of MSCs. CaP content of the nanofibers can 

be further increased to reach that of cortical bone by reducing the thickness of individual 

fiber layers in the LBL approach or by reducing porosity of the fiber sheets. The CaP 

deposited GLU-NF composites are potentially useful as a biomimetic matrix in 

regeneration of skeletal tissues. 

3.6 CONCLUSION 

In this work, the effect of calcium phosphate (CaP) deposition on aligned 

nanofibers surface-modified with EEGGC glutamic acid peptide on osteogenic 
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differentiation of rat marrow stromal cells was investigated. In an effort to increase CaP 

to fiber ratio, a layer-by-layer approach was used to improve the diffusion of calcium and 

phosphate ions inside the microsheets. Based on Dissipative Particle Dynamics 

simulation of PLGA/PLA-GLU fibers, >80% of GLU peptide was localized to the fiber 

surface. X-ray diffraction results showed the characteristic apatite peaks in CaP crystals 

grown on GLU-NF microsheets. CaP to fiber ratio of the microsheets increased from 

50% for a single fiber layer to 200% for the LBL microsheet with the same overall 

thickness when incubated in a modified SBF medium. Tensile modulus increased from 

550 MPa for a single fiber layer to 880 MPa for the LBL microsheet. MSCs seeded on 

GLU-NF microsheets after CaP deposition spread along the direction of fiber alignment, 

irrespective of the extent of CaP deposition. Osteogenic differentiation of MSCs seeded 

on GLU-NF microsheets increased significantly with CaP deposition on the fibers prior 

to cell seeding. For example, peak ALPase activity increased from 1600 IU/mg DNA for 

GLU-NF without CaP deposition to 5200 IU/mg DNA for CaP-deposited LBL 

microsheet, and calcium content after 28 days increased from 460 to 960 mg/mg DNA. 

Expression of osteogenic markers OP, ALPase, OC, and Col-1 increased gradually with 

increasing CaP deposition on GLU-NF microsheets. The findings of this work 

demonstrate that surface modification of nanofibers with GLU peptide by blending 

PLGA with PLA-GLU dramatically affects nucleation and growth of calcium phosphate 

crystals leading to increased osteogenic differentiation of MSCs and mineralization. 
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CHAPTER 4 OSTEOGENIC DIFFERENTIATION OF MARROW STROMAL CELLS 

IN OSTEON-MIMETIC MINERALIZED NANOFIBROUS MICROTUBES 
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CHAPTER 4  

OSTEOGENIC DIFFERENTIATION OF MARROW STROMAL CELLS IN OSTEON-

MIMETIC MINERALIZED NANOFIBROUS MICROTUBES 

4.1 INTRODUCTION 

Cranial, maxillofacial, oral fractures and large bone defects are currently being 

treated by using auto- and allografts. These techniques have limitations in the clinical 

usage such as immune response, donor-site morbidity, and lack of availability [1, 3, 169]. 

Therefore, the interest on tissue engineering applications for bone graft procedures has 

rapidly been growing. Tissue engineering approach requires a cell supporting scaffold in 

order to maintain a 3- dimensional substrate for cells to function during the formation of 

bone tissue [5, 6]. Electrospinning has been widely used to fabricate nanofibrous matrices 

to mimic the morphology of the collagen fibers in the bone extracellular matrix [16, 170]. 

Since electrospun nanofibers provide a large surface-to-volume ratio and mimic the 

natural extracellular matrix of bone tissue, it has been found to be a suitable scaffold for 

bone tissue engineering [18, 19]. Nanofibers has been fabricated from natural 

biopolymers, like collagen and chitosan, or synthetic polymers such as poly(L-lactide) 

(PLLA) and poly(ε-caprolactone) (PCL)[78, 87-89]. Due to the low mechanical 

properties of NFs, composite nanfibrous scaffolds with calcium-phosphate(CaP) crystals 

can provide adequate mechanical properties and support for cell attachment, proliferation, 

and differentiation of mesenchymal stem cells[116, 171]. Nucleation of CaP nanocrystals 
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on collagen fibers in the bone matrix is mediated by ECM non-collagenous proteins such 

as bone sialoprotein (BSP), osteonectin (ON), osteopontin (OP), and osteocalcin 

(OC).[124, 172, 173] Glutamic acid (GLU) sequences ranging from 2-10 residues in 

those proteins regulate nucleation and growth of CaP crystals on collagen fibers [124]. 

Therefore, 2mer GLU was conjugated on the PLGA nanofiber microsheets to induce CaP 

nucleation. In addition, a layer-by-layer approach was used to improve the diffusion of 

calcium and phosphate ions inside the microsheets in order to achieve a high CaP to fiber 

ratio.  

The cortical bone composed of osteons that have microtubular structures with a 

central vascular channel inside for ensuring suitable nutrient/waste transport to the bone 

tissue [11]. Laminated multilayers of CaP deposited collagen fibers forms the osteon 

microtubes. Therefore, engineered bone grafts that can mimic the microstructure of bone 

would be a strong candidate for bone tissue engineering applications. The physical 

configuration of the scaffolds, which mediate the cell-cell and cell-scaffold interactions, 

exert strong influence on the success of osteogenic processes in vitro [174, 175]. The 

success of engineered scaffold mostly depends on how closely the cell-scaffold 

relationship mimics that natural tissue in vivo. Both in vitro and in vivo studies have 

demonstrated the organic/inorganic composite fibrous scaffolds support attachment, 

differentiation, and proliferation of osteoblasts or mesenchymal stem cells (MSCs) and 

facilitate bone healing [116]. However, investigations regarding the effect of osteon-

mimetic tubular scaffolds size (inner diameter) with 3-D morphology on osteogenic 

differentiation of MSCs are still limited. To this end, we hypothesized that three 

dimensional structure of microtubes with well-defined pores could potentially mimic the 
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microstructure of osteons in cortical bone and induce osteogenesis of MSCs. In order to 

test this hypothesis, we investigated the osteogenic differentiation potential of MSCs 

when seeded into different diameter microtubes engineered from CaP deposited aligned 

nanofiber microsheets that have an array of macropores to enhance diffusion of nutrients. 

The microtube structure fabricated by wrapping perforated microsheets around the 

stainless steel needles upon annealing above glass transation temperature (Tg) of PLGA.  

The effect of tubular formation and the inner diameter of CaP deposited microsheets on 

osteogenic differentiation of rat MSCs was investigated by cytochemicalanalysis. Our 

results indicate that the 3-D microtubes provide a promising microenvironment that 

enhances osteogenesis. However, changing the inner diameter of the osteon-mimetic 

microtubes did not change the cytochemical analysis significantly.

4.2 MATERIALS AND METHODS 

4.2.1 FABRICATION OF MINERALIZED GLUTAMIC ACID TEMPLATED 

PEPTIDE CONJUGATED PLGA NANOFIBERS MICROSHEETS AND 

MICROTUBES  

The CaP nucleated microsheets in Chapter 3 were used for fabricating the osteon-

mimetic microtubes. Beriefly, the EEGGC peptide was synthesized manually on Rink 

Amide NovaGel
TM

 resins as described [100, 125, 126]. Briefly, rink amide NovaGel
TM

 

resin (100g) was incubated in DMF (3 ml) for 30 min to swell completely. Then, the resin 

was washed with DMF (23 ml). Fmoc-protected amino acid derivative (6 eq.) and HOBt 

(12 eq.) were dissolved in dry DMF (3 ml). Next, DIC (6.6 eq.) as an accelerator was 

added to the mixture. Then, the resulting mixture was shaken 5-10 min and added to the 

resins. Next, 0.2 ml DMAP (0.05 M) was added to the mixture. The mixture was placed 

in an orbit shaker for 4-6 hr at 30C. The reaction was tested using Kaiser reagents. If the 
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test result was positive, the above coupling reaction would be repeated until a negative 

result was reached. After the reaction, the resins were washed with DMF (53 ml) and 

treated with 20% piperidine in DMF for 2  15 min in order to deprotect the F-moc 

groups of the amino acids. The subsequent amino acids were coupled using the same 

method. After peptide chain elongation, the resins were washed with 5  DMF and 5  

DCM. The EEGGC peptide was cleaved from the resin by treating with 95% TFA/2.5% 

TIPS/2.5% water and precipitated in cold ether. After drying, the EEGGC peptide was 

conjugated to poly (lactide) acrylate (PLAA, MW=4000 Da) macromer by Michael’s 

addition reaction between the acrylate group on the macromer and the cysteine’s 

sulfhydryl group on the peptide to produce a PLAA-EEGGC conjugate. A mixture of the 

peptide and PLAA macromer (2:1 molar ratio) was dissolved in a 1:1 mixture of 

DMF:water, and allowed to react at 30°C overnight in an orbital shaker. The mixture was 

dialyzed against DI water and lyophilized to obtain the dry product. 

Electrospinning solutions of high molecular weight PLGA (10 wt%) and mixtures 

of PLAA conjugated EEGGC peptide (1.5% of PLGA amount) were prepared in 

hexafluoro-2-propanol (HFIP). A programmable KDS100 syringe pump (KD Scientific, 

Holliston, MA) was used to pump the polymer solution, which was inside a 1 ml syringe 

(Norm-Ject, Henke Sass Wolf GmbH, Tuttingen, Germany) to the end of a 21 GTW 

needle (PrecisionGlide, 0.81 mm O.D., Becton-Dickinson, Franklin, NJ) at a specified 

flow rate of 1.0 ml/h. The 20 kV positively charged Pt electrode of a high voltage supply 

(ES40P-5W/DAM, Gamma High Voltage Research) was connected to the needle. A 

high-speed rotational wheel collector (custom built in the Machine Shop at University of 

South Carolina) was used to prepare glutamic acid template aligned nanofiber 
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microsheets (GLU-NF). A grounded aluminum wheel (20 cm diameter and 5 mm 

thickness) powered by a high speed DC motor (2M0578, up to 5000 rpm, Dayton 

Electric, Niles, IL) was used to collect nanofibers and placed at 7.5 cm underneath the 

needle. The force generated by the high electric field between the needle and the rotating 

wheel overcame the surface tension of the polymer solution and stretched the accelerating 

jet as fibers toward the collector while the solvent evaporated during the process. The 

polymer jet, after deposition on the collector, was further stretched by the tangential force 

produced by the rotation of the wheel and formed aligned fibers on the edge of the wheel.  

Mineralization of nanofiber microsheets was occurred by depositing the apatite 

crystals on nanofiber microsheets via using Lie et al.’s modified 10-fold-concentrated 

simulated body fluid (m10SBF(1). Briefly, the stock solution of 10SBF was prepared by 

dissolving NaCl, KCl, CaCl2• H2O, MgCl2• 6H2O and NaH2PO4 in distilled deionized 

(DDI) water (10SBF stock solution pH=4.2). Next, in order to reach physiological pH of 

7.4, 60 mM of NaHCO3 was dissolved in the 10SBF stock solution prior to 

mineralization process. The impurities and formed large CaP crystals in the pH range of 

5.9 to 7.4 were removed by filtering the solution through a 0.22 μm pore size filter 

system. Nanofiber microsheets were then immersed in m10SBF filled plastic beaker and 

kept at room temperature for 6h and 24h. The m10SBF was replaced with fresh m10SBF 

every 6 h over apatite growth cycle. After removal from m10SBF, the nanofiber 

microsheets were washed with DDI water three times and then dried at room temperature. 

In the layer-by-layer approach, the first GLU-NF microsheet, approximately 5 µm thick, 

was electrospun on a 12 mm circular glass coverslip (VWR, Bristol, CT). Next, the 

microsheet was incubated in m10SBF for the prescribed time, washed with DI, and dried. 
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After drying, the second GLU-NF layer was electrospun directly on the first layer. The 

bilayer sheet was incubated in m10SBF for a prescribed time, washed with DI, and dried. 

This layer-by-layer process was repeated five times to produce a 26±2 μm thick 

mineralized multilayer GLU-NF circular sheet (12 mm diameter). The multilayer 

approach improved diffusion of calcium and phosphate ions inside the fiber sheet when 

incubated in m10SBF solution. Scanning electron microscope (SEM) was used to image 

the nanofibers microsheets with different CaP content. After coating the samples with 

gold (Poloron sputter coater, Quorum Technologies, New Haven, UK) at 20 mA for 45 

sec, the microsheets was attached to a SEM stub with double-sided conductive tape and 

imaged with a Field Emission Scanning Electron Microscope (FESEM, Carl Zeiss 

Microscopy, Hillsboro, OR) at an accelerating voltage of 8kV. SEM images were 

analyzed with Image J software (National Institutes of Health, Bethesda, MD) to measure 

the size of the nanofibers and CaP crystals.   

CaP nucleated elctrospun microsheets (5 cm length*1 cm witdh) wrapped around 

the 21 GTW needle (PrecisionGlide, 0.81 mm O.D., Becton-Dickinson, Franklin, NJ) and 

placed in pre-heated 80 C
o
 oven for 10 min to anneal the structure of the microsheets and 

keep it’s microtubalar structure by shape memory effect. Prior to wrapping the 

microsheets around the needle, uniform micropores were created by 29 GTV needle 

(PrecisionGlide, 0.34 mm O.D., Becton-Dickinson, Franklin, NJ) on the microsheets to 

induce diffusion of nutrients and oxygen during the cell culture period. Different 

diameter microtubes were fabricated by using different size of needles by following the 

explained procedure above. The porosity and density of the CaP nucleated NF 

microsheets before and after heat treatment were calculated using Eq. (1) and Eq. (2). 
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The thickness and size of the microsheets were measured using a micrometer caliper 

(VWR, Atlanta, GA). The tensile modulus of the samples before and after heat treatment 

was measured with a Rheometrics Dynamic Mechanical Analyzer (RSA III DMA, 

Piscataway, NJ) with a strain rate of 0.033/s. Samples were cut to dimensions of 20x5 

mm and mounted in the standard vertical clamps of the DMA. The maximum allowed 

strain was set at 160% and measurements were made at ambient conditions. The 

thickness and width of the samples were measured with a micro-caliper (Mitutoyo, 

Aurora, IL). The modulus was calculated as the slope of the linear region of the stress-

strain curve. 

 

 

(1) 

 

(2) 

MSCs were isolated from the bone marrow of young adult male Wistar rats (6-8 

weeks) [93, 100, 125, 176]. Cell isolations were performed under a protocol approved by 

the Institutional Animal Care and Use Committee of the University of South Carolina. 

Wistar rats were sacrificed, and femurs and tibias were aseptically removed. The marrow 

was flushed out with 20 ml of cell isolation medium which consisted of DMEM 

supplemented with 10% FBS, 100 µg/µL streptomycin, 100 units/mL penicillin, 20 

µg/mL fungizone, and 50 µg/mL GS. The cell suspension was centrifuged at 200g for 5 

min and the cell pellets were re-suspended in 12 ml of primary medium (DMEM 
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supplemented with 10% FBS, 100 units/mL penicillin, 100 µg/mL streptomycin, 50 

µg/mL GS, and 250 ng/mL fungizone), aliquoted into T-75 flasks and maintained in a 

humidified 5% CO2 incubator at 37 °C. Cultures were washed with PBS and replaced 

with fresh media at 3 and 7 days to remove unattached cells. Cells were rinsed with PBS, 

enzymatically lifted with 25 µL/cm
2
 0.05% trypsin/ 0.53 mM EDTA and centrifuged at 

200g for 5 min. The third passage cells were used for cell culture experiments. Cell 

attachment to the nanofiber mesh was done with undifferentiated MSCs cultured in the 

primary medium.  

MSCs were characterized by immunostaining of specific surface markers. Isolated 

MSCs were fixed with 4% paraformdehyde for 30 min, permeabilized with 0.1% Triton 

X-100 and 100 mM glycine in PBS (pH 7.4) for 1 h and blocked with blocking solution 

including 1.5% BSA and 0.5 mM glycine in PBS for 2 h. The primary antibodies used for 

MSCs characterization are CD73, CD90, VE-cadherin, and CD-31 (Pecam-1). The 

primary antibodies diluted in blocking solution for 1:100 and incubated with cells for 12–

16 h at 4 °C. Secondary antibodies (Alexa fluor
®
 488, 593 obtained from Molecular 

Probes, Invitrogen) were used at 1:100 dilutions in blocking buffer for 2 h at room 

temperature in the dark. Nuclei were stained with DAPI (4, 6-diamidino-2-phenylindole, 

100 ng/ml). Images of the cells visualized using a fluorescence microscope (Zeiss LSM 

510 Meta CSLM).   

The 0.8 mm and 0.35 mm diameter microtubes were sterilized by ultraviolet 

radiation for 12 h with a mercury UV lamp (Black-Ray, 365 nm, 100 W; UVP, Upland, 

CA), followed by immersing in 70% ethanol for 30 min and washing three times with 

sterile PBS. The microtubes and microsheets were conditioned by immersion in primary 
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culture media for 1 h prior to cell seeding. Each sample was seeded with 5 µL of the 

MSCs cell suspension (5 x 10
6
 cells/mL) in primary media at 1 x 10

5
 cells/cm

2
 seeding 

density by using syringe which has 0.25 mm diameter sterile needle. After 24 h 

incubation for cell attachment, the media were replaced with osteogenic media (primary 

media supplemented with 100 nM dexamethasone, 50 µg/mL ascorbic acid, 10 mM ß-

glycerophosphate) and cultured in a humidified 5% CO2 incubator for up to 28 days. 

MSCs seeded GLU-NF, GLU-NF/CaP30, and GLU-NF/CaP50 microsheets were 

incubated with 0.16 µM Alexa Fluor® 594 phalloidin (Invitrogen) and 300 nM DAPI for 

30 min at ambient conditions to stain the cell actin filaments and nuclei, respectively. The 

cell morphology on each sample was imaged with a Nikon Eclipse Ti-ε inverted 

fluorescent microscope.  

4.2.2 OSTEOGENIC DIFFERENTIATION OF MSCs SEEDED IN MICROTUBES 

AND ON MICROSHEETS  

At each time point (7, 14, and 28 days), cell-seeded microtubes were washed with 

serum-free DMEM for 8 h to remove serum components, then washed with PBS, lysed 

with 10 mM Tris supplemented with 0.2% triton in PBS and used for the measurement of 

DNA content, ALPase activity, calcium content, and total collagen content. The double-

stranded DNA content of the samples was determined by using a Quant-it PicoGreen 

assay (Invitrogen, Carlsbad, CA) according to the manufacturer’s instruction. An aliquot 

(100 µl) of the working solution was added to 100 µl of the cell lysate and incubated for 

4 min at ambient conditions. The fluorescence was measured with a Synergy HT plate 

reader (Bio-Tek; Winooski, VT) at emission and excitation wavelengths of 485 and 528 

nm, respectively. ALPase activity was assessed using a QuantiChrom ALPase Assay Kit 
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(BioAssay Systems, Hayward, CA) according to the manufacturer’s instruction. A 10 µl 

aliquot of the cell lysate was added to 190 µl of the reagent solution containing 10 mM p-

nitrophenyl phosphate and 5 mM magnesium acetate, and the absorbance was recorded at 

time zero and again after 4min. ALPase activity was calculated using the equation [(At=4 

– At=0)/ (Acalibrator – AddH2O) x 808] expressed as IU/L. The absorbance was measured on a 

Synergy HT plate reader at 405 nm. The calcium content was measured using a 

QuantiChrom Calcium Assay Kit (BioAssay Systems) according to the manufacturer’s 

instruction. A 0.2 ml aliquot of 2 M HCl was added to 0.2 ml of the cell lysate to dissolve 

the calcium content of the mineralized matrix. Next, a 5 µl aliquot of the supernatant was 

added to 200 µl of the working solution. After incubation for 3 min, the absorbance was 

measured with a plate reader at 612 nm. Measured intensities were correlated to 

equivalent amounts of Ca
2+

 using a calibration curve constructed with calcium chloride 

solutions of known concentration ranging from 0 to 200 µg/mL. For CaP deposited 

samples, the measured intensities after incubating with cell lysing solution at day 0 were 

used as the baseline, and subtracted from the measured intensities at days 7–28. Alkaline 

phosphatase activity and calcium content were normalized to the DNA amount at specific 

time point. Collagen production was analyzed by SIRCOL collagen assay kit protocol 

(Biocolor, Newtownabbey, UK) in the supernatants  after 7, 14 and 28 days of cell 

culture in microtubes. The collagen containing supernatant from the culture was mixed 

with 1 mL of Sircol dye for 30 min and centrifuged at 10,000 rpm for 5 min to precipitate 

the collagen–dye complex. After decanting the suspension, pellets were dissolved in 1 

mL Sircol alkali reagent and vortexed. Subsequently, 100 μl of the acquired solution was 

read at 555 nm. The amount of collagen was calculated based on a standard curve of 



 

77 

Sircol Rat Collagen Reference Standard (Biocolor). Cell lysate solution was used as a 

negative control.   

4.3 RESULTS AND DISCUSSION 

4.3.1 PROPERTIES OF OSTEON-MIMETIC MICROTUBES 

The ideal three dimensional bone tissue engineering scaffolds must be porous 

enough to support nutrients and oxygen transfer, mimic the micro and nanoscale features 

of the cortical bone, and composed of biodegradable and biocompatible material [177]. 

Although numerous different types of three-dimensional scaffolds have been fabricated, 

none of them completely mimics the micro- and nano structure of the natural bone tissue. 

For this purpose, in this study we used CaP nucleated PLGA based perforated nanofiber 

microsheets to fabricate microtubular scaffolds by using heat treatment. In order to 

enhance porosity of the tubular scaffolds, array of 180 µm diameter perforated holes were 

made on microtubular scaffolds.  

In this study, NF microsheets were fabricated by electrospinning of 10 wt% 

PLGA concentration, 1.0 µL/h injection rate, 20 kV electric potential, needle-to-wheel 

distance, wheel diameter, and rotation speed of the wheel 7.5 cm, 20 cm, and 1200 rpm, 

respectively [93, 173, 178]. The solution concentration (viscosity) has a major effect on 

NF morphology. For example, we have previously shown that the minimum polymer 

concentration to produce bead-free fibers, in HFIP was 9 wt.% [93]. Below that critical 

concentration, surface tension breaks the accelerating jet of fibers into droplets. 

Morphological structure of GLU-NF in this work indicates that formed NF have 

diameters similar to collagen fibers (50-500 nm), a major bone extracellular matrix 

component [119]. It was reported that nanofibrous scaffolds enhanced osteogenic 
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differentiation. For example, Smith et al. compared the osteogenic ability of nanofibrous 

matrix to solid films by seeding mouse embryonic stem cells and culturing in osteogenic 

media for 26 days. They showed significantly higher osteocalcin and bone sialoprotein 

expression on the nanofibrous matrix compared to those on the solid films [179]. In 

addition, Hu et al. cultured MC3T3-E1 cells on flat and nanofibrous PLLA films to test 

the ability of the matrix to support osteogenesis. They demonstrated that the cells on the 

nanofibrous showed higher levels of osteocalcin and bone sialoprotein expression 

compared to flat films after 6 days [180]. 

In our previous study (Chapter 3), the calcium and phosphate crystals content of 

GLU-NF microsheets after incubation in mSBF at different time points were measured. 

The results shows that 30% (GLU-NF/CaP30), 50% (GLU-NF/CaP50) and 200% 

(LBL/CaP200)  CaP content based on the CaP to fiber weight ratio were fabricated after 

incubation GLU-NF microsshets in mSBF for 6h and 24h, respectively (Chapter 3). The 

SEM images of GLU-NF (a), GLU-NF/CaP30 (b), GLU-NF/CaP50 (c), and 

LBL/CaP200 microsheets are shown in Figure 4.1, respectively. CaP crystals nucleated 

from the fiber surface after 6 h incubation can be seen in Figure 4.1b. As incubation time 

increased to 24 h, the amount of CaP crystals increased significantly, as shown in Figures 

4.1c, respectively. Figure 4.1d shows CaP nucleated nanofibers by layer-by-layer 

application, as it is seen in the image the content of CaP crystals with the average size of 

100 nm increased significantly with layer-by-layer method (The procedure for fabrication 

of LBL-CaP200 microsheets is explained in Chapter 3.2). We have shown that, LBL 

approach resulted with a dramatic increase in CaP content from 50±6 to 200±5%, 

indicating that CaP nucleation and growth on GLU-NF fibers was controlled by diffusion 
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of calcium/phosphate ions from the medium to inside the microsheets. The image of 

GLU-NF microsheets before and after heat treatment is shown in Figure 4.2a and Figure 

4.2b, respectively. The average size of the microsheets before and after heat treatment 

was 8.7x10.7x0.05 mm, 9.7x13.2x0.04 mm, respectively. The heat treatment resulted 

with the significantly shrinkage of the nanofiber microsheets. 

 

 

Mineralization in osteons occurs under the function of glutamic-acid rich residues 

of bone sialoprotein and osteonectin [181, 182].  Therefore, peptides including 

polyglutamic acid sequences have been widely investigated to determine the interaction 

with nHA crystals. For example, Itoh et al. coated HA with the synthetic peptide 

 

 

Figure 4.1 SEM images of the microsheets after incubation in m10SBF medium. Images 

(a) and (b) are low magnification images of PLGA and PLGA/PLA-GLU microsheets 

after incubation in m10SBF for 24 h, respectively. Images (b) and (c) are for PLGA/PLA-

GLU microsheets after 6, and 24 h incubation in m10SBF, respectively. Image (d) is for 

PLGA/PLA-GLU microsheets deposited with CaP crystals in a layer-by-layer (LBL) 

approach. Scale bars in (a-d) represent 200 nm, respectively. 
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(E7PRGDT), and seeded osteoblastic cells onto the surface. They demonstrated that the 

amount of E7PRGDT peptide containing polyglutamic acid sequence bound to HA was 

higher than passively adsorbed RGD at all coating concentrations due to high affinity of 

polyglutamic acid peptide to nHA crystals [183]. In addition, Sarvestani et al. treated the 

surface of nHA particles with glutamic acid peptide (Ac-Glu6). It was indicated that the 

average density of elastically active chains in the PLEOF network increased significantly 

when nHA in the network were treated with the osteonectin-derived Ac-Glu6 [173]. 

Similar to others, in our previous study, conjugation of glutamic acid template peptide on 

NF significantly increased the CaP nucleation (Chapter 3). Thus, in this study we used 

the glutamic acid conjugated NF to nucleate the CaP crystals. 50 % CaP to fiber mass 

ratio (GLU-NF/CaP50) was used to fabricate the osteon-mimetic microtubes. The micro-

tubuler structure of the biofabricated scaffolds ideally mimics the osteons structures in 

cortical bone [184]. 

 The effect of the heat treatment on GLU-NF, GLU-NF/CaP30, GLU-NF/CaP50, 

and LBL/CaP200 microsheets porosity and density are shown in Figure 4.2c and 4.2d, 

respectively. The results indicated that the porosity of the CaP nucleated microsheets 

after heating decreased significantly for all the test groups. In addition, the appeareant 

density of different CaP containing GLU-NF microsheets was increased significantly for 

each test group after heat treatment. The tensile modulus of the microsheets before and 

after heat treatment is shown in Figure 4.2e.  The heat treatment significantly increased 

the tensile modulus of the CaP nucleated GLU-NF microsheets.  For example, the tensile 

modulus of GLU-NF/CaP50 microsheets increased from 539±3 MPa to 770±65 MPa.  It 

was demonstrated that there was a significant increase in tensile modulus on GLU-
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NF/CaP50 microsheets after heat treatment. These results indicated that the stiffness of 

GLU-NF/CaP50 microsheets was increased by heat-shrinking the microsheets. Similar 

with our results, it has been reported that with the increasing the apatite content in 

nanofibrous microsheets, the tensile modulus of the microsheets increases significantly 

[185]. In addition, incorporation of nHA crystals in polycaprolactone fibers increases the 

tensile modulus of fabricated electrospun NF [149]. Overall, nAP deposited GLU-cNF 

have the potential to provide higher structural support to progenitor cells compared to NF 

with no nAP content. It has been observed that increasing mineral content on NF 

significantly enhanced MSCs adhesion and differentiation [186].  

 

 

 

 

Figure 4.2 Effect of heat treatment on the aligned nanofiber microsheet shrinkage before 

heating (a) and after heating (b). The effect of heat shrinking on porosity(c), density(d) 

and tensile modulus(e). Experimental groups include GLU-NF, GLU-NF/CaP30, GLU-

NF/CaP50, and GLU-NF/LBL200. One star indicates statistically significant difference 

(s.d.; p<0.05) between before annealing and after annealing for the same experimental 

group. Error bars correspond to means ± 1 SD for n = 3. 
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Figure 4.3 SEM image of CaP deposited nanofiber microsheet with array of circular 

macropores(a),  SEM image of microtube fabricated by wrapping a perforated microsheet 

around a needle followed by heat treatment at 80 C
o
 for 10 min (b), and the  image of 

perforated microtube bundles of twenty microtubes with the average microtube diameter 

of 450 µm (c), SEM images of different inner diameter microtubes 250 µm (d), 450 µm 

(e), and 800 µm (f). 

 

The limitation of nanofibers fabrication with electrospinning is that it produces a 

relatively two dimensional fibrous scaffolds. In addition, the pore sizes are relatively 

smaller which does not allow cells to penetrate into the scaffold [177]. To overcome 

these problems, perforated nanofibrous microsheets were used to fabricate three 

dimensional microtubes with different diameters. This biofabrication technique could be 

a potential way to develop highly porous 3D nanofibrous scaffolds. The SEM images of 

micropores structures on the microsheets and microtubes after heat treatment are shown 

in Figure 4.3a and Figure 4.3b. The average size of the micropores was 180 µm. The 

microtubes were fabricated in different inner diameters by wrapping the perforated 

microsheets around different size needles. In figure 4.3, SEM images of different inner 
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diameter microtubes 250µm (d), 450 µm (e), and 800(f) are shown. The fabricated 

microtubes bundled together by annealing at 80 C
o
 for 10 min. Figure 4.3c shows the 

bundle of microtubes average individual tube size of 450 µm. This biofabrication 

technique of osteon-mimetic tubular scaffolds would enable to develop larger scale bone 

grafts with the nanofbirous structure and microscale osteon size.  

4.3.2 OSTEOGENIC DIFFERENTIATION OF MSCs IN MINERALIZED 

MICROTUBES AND ON MICROSHEETS 

The immunohistochemistry images of MSCs for Cd73, CD90, VE-cadherin, and 

CD-31 (PECAM-1) are shown in Figure 4.4a1-4.4a4. The results indicated that MSCs 

had strong CD73 and CD90 expression, whereas there was no VE-cadherin and CD-31 

expression. Similar with our results, Gustafsson et al. and Valarmathi et al. demonstrated 

that isolated rat MSCs exhibited high expression of mesenchymal markers of CD73, and 

CD90 and negative expression for CD-31 and VE-cadherin[187, 188].  

In order to observe the morphology of individual cells, MSCs were seeded on the 

microsheets at low density of 1500 cells/cm
2
 and incubated in osteogenic medium. 

Fluorescent images (a-c) of cell nuclei (blue) and cytoskeletal actin filaments (red) in 

Figure 4.4b1-4.4b4 show morphology of the MSCs seeded on GLU-NF (a), GLU-

NF/CaP30 (b), and GLU-NF/CaP50 (c) and LBL/CaP200 microsheets after two days of 

incubation. The images indicate that the seeded cells completely aligned with fiber 

direction irrespective with CaP nucleation. Inset images in Figure 4.4b1-4.4b4 show the 

SEM images of corresponding GLU-NF (a), GLU-NF/CaP30 (b), GLU-NF/CaP50 (c), 

and LBL/CaP200 microsheets. 
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Figure 4.4 The immunohistochemistry images of MSCs stained with CD73(a1), CD90 

(a2), VE-cadherin(a3) and CD-31(a4). Morphology of MSCs seeded on GLU-NF(b1), 

GLU-NF/CaP30(b2), GLU-NF/CaP50(b3), and GLU-NF/LBL200(b4) microsheets after 

seven days of incubation in osteogenic medium (scale bar is 100 µm). In the images, cell 

nuclei and cytoskeletal actin are stained with DAPI (blue) and phalloidin (red), 

respectively. The arrow in the images shows direction of the aligned nanofibers. The 

inset in each image shows the corrosponding SEM images of the GLU conjugated 

nanofiber microsheets before (GLU-NF, a) and after incubation in m10SBF medium for 

6h (GLU-NF/CaP30, b) and 24h (GLU-NF/CaP50, c) (scale bar is 2 µm).  
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MSCs differentiation into an osteogenic lineage occurs in a two-stage maturation 

process, where ALPase increases and peaks in the early stage of osteogenic 

differentiation and mineralization, and then decreases while calcium content starts to 

increase [151]. For both experimental groups, the DNA content after 7 days started to 

decrease gradually. It has been demonstrated that differentiation of MSCs osteogenic 

media significantly reduces the proliferation of MSCs [93, 189]. MSCs were seeded in  

0.35 mm (MT, 0.35mm), and 0.8 mm (MT, 0.8 mm) diameter microtubes and cultured in 

osteogenic media for 28 days. DNA content, ALPase activity, calcium content, and total 

collagen content of the MSCs were analyzed as a function of incubation time. Figure 4.5a 

shows the DNA content of the MSCs 0.35 mm, and 0.8 mm diameter microtubes as a 

function of incubation time. The time points for osteogenic differentiation of MSCs were 

7, 14, and 28 days. Since the cell seeding density kept constant for all experimental 

groups (1x10
5
 cells/cm2), the DNA content in 0.35 mm microtubes was significantly 

lower than 0.8 mm microtubes and microsheets. In addition, it was indicated that the CaP 

deposited microsheets and formed microtubes did not have a toxic effect on the seeded 

cells.  

ALPase activity of the MSCs in 0.8 mm, and 0.35 mm diameter microtubes as a 

function of incubation time is shown in Figure 4.5b. In the experimental groups, ALPase 

activity peaked after 14 days, then it started to decrease gradually for different size 

microtubes cultures. The results indicated that there was no significant difference 

between 0.8 mm and 0.35 mm microtubes on day 14. For example, the the peak value of 

ALPase activity of MSCs in  0.35 mm, and 0.8 mm microtubes 4370±654, and 5275±685 

IU/mgDNA at day 14, respectively. ALPase activity of all other groups, incubated in 
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osteogenic medium, peaked after 14 days and returned to baseline level at day 28, 

consistent with previous reports [151]. These results indicated that the inner diameter of 

the microtubes did not affect on the ALPase activity of MSCs. It was demonstrated that 

ALPase activity of MC3T3-E1 preosteoblast cells on apatite coated poly (ε-caprolactone) 

(PCL) fibers was higher than uncoated PCL fibers [123]. In addition, it was reported that 

the presence of nHA on poly-caprolactone fibers enhanced the ALP activity of MC3T3-

E1 preosteoblast cells [190]. This result is consistent with previous results that showed 

the calcium content of MSCs on aligned and random PLAA NF significantly increased 

with time [93]. High ALPase  expression is a marker of maturation phase of MSCs, while 

high expression of OC and OP represents mineralization phase of osteogenic 

differentiation of MSCs [178]. In addition, it was demonstrated that ALPase expression 

decreases during the mineralization phase of MSCs [191]. 

Calcium content of the MSCs in microtubes (0.35mm and 0.8 mm) as a function 

of incubation time is shown in Figure 4.5c. The results indicated that there was no 

significant difference on the Ca content of 0.35 mm and 0.8 mm microtube groups on 

calcium content. For example, the calcium content in 0.35 mm microtubes were 453±59, 

and 0.8 mm microtubes were 635±41 mg Ca/mg
 

DNA, respectively. All calcium 

measurements were subtracted from the amount at day 0 to remove the calcium due to 

CaP deposition prior to cell seeding. For all groups, extent of mineralization of the MSCs 

increased gradually from day 7 to 28 in osteogenic medium.  This result is consistent with 

previous results that showed the calcium content of MSCs on aligned and random PLAA 

NF significantly increased with time [93]. 

The total collagen production in microtubes (0.35 and 0.8 mm) is showed in 
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Figure 4.5d. The secretion of newly formed collagen is important to enhance the stability 

of the mineralized microtubes and microsheets during the culture. For example, the total 

collagen production of MSCs in microtubes (0.35 and 0.8 mm) was 472±75, 821±95, and 

983±127 μg Collagen/μg DNA after 28 days, respectively. There was no significant 

difference on collagen secretion between 0.35 mm and 0.8 mm microtubes. Moreover, 

the total collagen content gradually increased in both microtubes and microsheets culture 

with the increase of incubation time. 

 

 

 

Figure 4.5 DNA content (a), alkaline phosphatase activity (b), calcium content (c), and 

total collagen amount (d) of MSCs seeded inside GLU-NF/CaP50 microtubes cultured in 

osteogenic media. Experimental groups include GLU-NF/CaP50 0.35 mm microtubes 

(green), and 0.8 mm diameter microtubes (red). Time points include 7, 14, 28 days. Error 

bars correspond to means ± 1 SD for n = 3.  

  

The heat treatment of the microsheets improved the mechanical properties of the 

CaP nucleated GLU-NF microsheets. Our results indicate that the tensile modulus of 

GLU-NF increases by increasing the CaP content and heat treatment of the microsheets. 

This was consistent with the previously reported results showing that increasing the 

apatite amount on NF significantly increases the tensile modulus [185]. Moreover, it was 
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reported that incorporation of nHA crystals in polycaprolactone fibers increased the 

tensile modulus of fabricated electrospun NF [149].  Overall, the engineered microtubes 

from CaP nucleated GLU-NF have the potential to provide structural support to 

progenitor cells in bone tissue regeneration.     

4.4 CONCLUSION 

In this study, our objective was to investigate the effect of inner diameter of 

microtubes on osteogenic differentiation of rat MSCs. Extensive in vitro characterization 

indicated that the microtubular scaffolds are not only able to support cell attachment and 

proliferation, but also to provide an environment which improves the osteogenic 

differentiation of MSCs. This was confirmed by the increasing alkaline phosphatase 

activity, calcium phosphate deposition, and collagen content. In addition, the fabricated 

microtubes could be fused and larger scale tubular scaffolds for bone grafts application 

could be fabricated. It was also demonstrated that changing the inner diameter of the 

microtubes from 0.8 to 0.35 mm did not change the cytochemical results significantly. 

Present findings demonstrate that the 3D structure of microrubular scaffolds provide a 

promising microenvironment that enhances osteogenesis.  
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CHAPTER 5 

VASCULOGENIC DIFFERENTIATION OF MARROW STROMAL CELLS (MSCs) 

and ENDOTHELIAL PROGENITOR CELLS (EPCs) IN OSTEON-MIMETIC 

MINERALIZED NANOFIBROUS MICROTUBES 

 

5.1 INTRODUCTION 

The cortical bone composed of osteons that have microtube like structures with a 

central vascular channel inside for ensuring suitable nutrient/waste transport to the bone 

tissue [11]. Laminated multilayers of CaP deposited collagen fibers forms the osteon 

microtubes. The development of three-dimensional (3-D) bone tissue in-vitro has been 

limited by the need to create a vascular network within the tissue to supply required 

oxygen and nutrients to maintain tissue viability and function [192]. Vascularization 

inside the scaffold enhances diffusion and provides optimal nutrient/waste transport for 

engineered scaffolds [193]. The combination of endothelial progenirator cells (EPCs) 

with marrow stromal cells and seeded into engineered bone grafts has been offered as a 

promising and efficient approach to enhance vascularization and promote successful bone 

formation at the graft site [194-196]. For instance, cocultures of EPCs with MSCs in 

poly(lactic-co-glycolic acid) [PLGA] have shown enhanced microvascular network 

formation [197]. Therefore, engineered bone grafts that can mimic the microstructure of 

bone and have pre-vascularized structures that induce nutrients transport would be a 

strong candidate for bone tissue engineering applications. 
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The physical configuration of the scaffolds, which mediate the cell-cell and cell-

scaffold interactions, exert strong influence on the success of osteogenic and 

vasculogenic processes in vitro [174, 175]. The success of engineered scaffold mostly 

depends on how closely the cell-scaffold relationship mimics that natural tissue in vivo. 

The effect of the size of fabricated microtubes on EPCs/MSCs vasculogenic 

differentiation has not been studied yet. To this end, we hypothesized that 3D structure of 

microtubes with well-defined pores could potentially mimic the microstructure of osteons 

in cortical bone and induce vasculogenesis of MSCs and EPCs. In order to test this 

hypothesis, we investigated the vasculogenic differentiation potential of MSCs/EPCs 

when co-cultured and seeded into microtubes engineered from CaP deposited aligned 

nanofiber microsheets that have an array of macropores to enhance diffusion of nutrients. 

The microtube structure fabricated by wrapping CaP deposited nanofiber layers around 

the stainless steel needles upon application of heat energy to fuse by raising the 

temperature above PLGA glass transation temperature.  Our results indicate that the 3-D 

microtubes provide a promising microenvironment that enhances vascularization of 

MSCs-EPCs co-culture.  

5.2 MATERIALS AND METHODS 

5.2.1 MATERIALS 

N,N-Dimethylformamide (DMF), methylene chloride (DCM), N,N 

diisopropylethylamine (DIEA), N,N′-di- isopropylcarbodiimide , triisopropylsilane 

(TIPS), N,N-dimethylaminopyridine (DMAP), hydroxybenzotriazole (HOBt) and 

trifluoroacetic acid (TFA) were received from Acros Organics (Pittsburgh, PA). Diethyl 

ether and hexane were obtained from VWR (Bristol, CT). Piperidine, and triethylamine 
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(TEA) were purchased from Aldrich (Milwaukee, WI).The protected amino acids and 

Rink Amide NovaGel resin were purchased from EMD Biosciences (San Diego, CA). 

Dulbecco’s phosphate-buffered saline (PBS) and Dulbecco’s Modified Eagle’s Medium 

(DMEM; 4.5 g/L glucose with L-glutamine and without sodium pyruvate) were obtained 

from Cellgro (Herndon, VA). Ethylenediamine- tetraacetic acid disodium salt (EDTA), 

penicillin, and paraformaldehyde were purchased from Sigma (St. Louis, MO). All other 

solvents and chemicals were used as received. QuantiChrom Calcium Assay Kit, and 

QuantiChrom ALPase assay kits were purchased from Bioassay Systems (Hayward, CA). 

Sircol Collagen Assay kit was purchased from Biocolor Life Science assays (Antrim, 

United Kingdom). Alexa Fluor® 594 phalloidin, Trypsin, and 4',6-diamidino-2-

phenylindole (DAPI) were purchased from Invitrogen (Carlsbad, CA). All the antibodies 

for immunostaining were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). 

The PLGA (Durect Corporation, Pelham, AL) sample was a 50/50 copolymer of D, L-

lactide and glycolide monomers with intrinsic viscosity of 1.1 dL/g and weight average 

molecular weight of 105 kDa. 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol (HFIP), was 

purchased from VWR (West Chester, PA). Reagent grade chemicals (Fisher Scientific) 

were used in the preparation of m10SBF solution: NaCl, KCl, CaCl2• H2O, MgCl2• 

6H2O, NaH2PO4, NaHCO3. Matrigel was purchased from BD Biosciences (San Jose, 

California). CellTracker™ (Red) and Calcein-AM (Green) were obtained from Invitrogen 

(Carlsbad, CA). EBM-2 medium and following growth factors and supplements of the 

media such as vascular endothelial growth factor (VEGF), human fibroblast growth 

factor-B (hFGF-B) R
3
-insulin like growth factor (R

3
-IGF-1), human epidermal growth 
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factor (hEGF), ascorbic acid hydrocortisone, gentamycin, and amphotericin B were 

purchased from Lonza (Hopkinton, MA). 

5.2.2 FABRICATION OF MINERALIZED GLUTAMIC ACID TEMPLATED 

PEPTIDE CONJUGATED NANOFIBROUS MICROTUBES  

The EEGGC peptide was synthesized manually on Rink Amide NovaGel
TM

 resins 

as described [100, 125, 126]. Briefly, rink amide NovaGel
TM

 resin (100g) was incubated 

in DMF (3 ml) for 30 min to swell completely. Then, the resin was washed with DMF 

(23 ml). Fmoc-protected amino acid derivative (6 eq.) and HOBt (12 eq.) were 

dissolved in dry DMF (3 ml). Next, DIC (6.6 eq.) as an accelerator was added to the 

mixture. Then, the resulting mixture was shaken 5-10 min and added to the resins. Then, 

0.2 ml DMAP (0.05 M) was added to the mixture. The mixture was placed in an orbit 

shaker for 4-6 hr at 30C. The reaction was tested using Kaiser reagents. If the test result 

was positive, the above coupling reaction would be repeated until a negative result was 

reached. After the reaction, the resins were washed with DMF (53 ml) and treated with 

20% piperidine in DMF for 2  15 min in order to deprotect the F-moc groups of the 

amino acids. The subsequent amino acids were coupled using the same method. After 

peptide chain elongation, the resins were washed with 5  DMF and 5  DCM. The 

EEGGC peptide was cleaved from the resin by treating with 95% TFA/2.5% TIPS/2.5% 

water and precipitated in cold ether. After drying, the EEGGC peptide was conjugated to 

poly (lactide) acrylate (PLAA, MW=4000 Da) macromer by Michael’s addition reaction 

between the acrylate group on the macromer and the cysteine’s sulfhydryl group on the 

peptide to produce a PLAA-EEGGC conjugate. A mixture of the peptide and PLAA 

macromer (2:1 molar ratio) was dissolved in a 1:1 mixture of DMF:water, and allowed to 
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react at 30°C overnight in an orbital shaker. The mixture was dialyzed against DI water 

and lyophilized to obtain the dry product. 

Electrospinning solutions of high molecular weight PLGA (10w%) and mixtures 

of PLAA conjugated EEGGC peptide (1.5% of PLGA amount) were prepared in HFIP. A 

programmable KDS100 syringe pump (KD Scientific, Holliston, MA) was used to pump 

the polymer solution, which was inside a 1 ml syringe (Norm-Ject, Henke Sass Wolf 

GmbH, Tuttingen, Germany) to the end of a 21 GTW needle (PrecisionGlide, 0.81 mm 

O.D., Becton-Dickinson, Franklin, NJ) at a specified flow rate of 1.0 ml/h. The 20 kV 

positively charged Pt electrode of a high voltage supply (ES40P-5W/DAM, Gamma High 

Voltage Research) was connected to the needle. A high-speed rotational wheel collector 

(custom built in the Machine Shop at University of South Carolina) was used to prepare 

glutamic acid template aligned nanofiber microsheets (GLU-NF). A grounded aluminum 

wheel (20 cm diameter and 5 mm thickness) powered by a high speed DC motor 

(2M0578, up to 5000 rpm, Dayton Electric, Niles, IL) was used to collect nanofibers and 

placed at 7.5 cm underneath the needle. The force generated by the high electric field 

between the needle and the rotating wheel overcame the surface tension of the polymer 

solution and stretched the accelerating jet as fibers toward the collector while the solvent 

evaporated during the process. The polymer jet, after deposition on the collector, was 

further stretched by the tangential force produced by the rotation of the wheel and formed 

aligned fibers on the edge of the wheel.  

Mineralization of nanofiber microsheets was occurred by depositing the apatite 

crystals on nanofiber microsheets via using Lie et al.’s modified 10-fold-concentrated 

simulated body fluid (m10SBF(1). Briefly, the stock solution of 10SBF was prepared by 
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dissolving NaCl, KCl, CaCl2• H2O, MgCl2• 6H2O and NaH2PO4 in distilled deionized 

(DDI) water (10SBF stock solution pH=4.2). Next, in order to reach physiological pH of 

7.4, 60 mM of NaHCO3 was dissolved in the 10SBF stock solution prior to 

mineralization process. The impurities and formed large CaP crystals in the pH range of 

5.9 to 7.4 were removed by filtering the solution through a 0.22 μm pore size filter 

system. Nanofiber microsheets were then immersed in m10SBF filled plastic beaker and 

kept at room temperature for 6h and 24h. The m10SBF was replaced with fresh m10SBF 

every 6 h over apatite growth cycle. After removal from m10SBF, the nanofiber 

microsheets were washed with DDI water three times and then dried at room temperature.  

 CaP nucleated elctrospun microsheets (5 cm length*1 cm witdh) wrapped around 

the 21 GTW needle (PrecisionGlide, 0.81 mm O.D., Becton-Dickinson, Franklin, NJ) and 

placed in pre-heated 80 C
o
 oven for 10 min in order to let the microsheets shrink and 

keep it’s microtubalar structure by shape memory effect. Prior to wrapping the 

microsheets around the needle, uniform micropores were created by 29 GTV needle 

(PrecisionGlide, 0.34 mm O.D., Becton-Dickinson, Franklin, NJ) on the microsheets to 

induce diffusion of nutrients and oxygen during the cell culture period.  

5.2.3 MSCs and EPCs ISOLATION, CHARACTERIZATION AND SEEDING 

MSCs were isolated from the bone marrow of young adult male Wistar rats (6-8 

weeks) [93, 100, 125, 176]. Cell isolations were performed under a protocol approved by 

the Institutional Animal Care and Use Committee of the University of South Carolina. 

Wistar rats were sacrificed, and femurs and tibias were aseptically removed. The marrow 

was flushed out with 20 ml of cell isolation medium which consisted of DMEM 

supplemented with 10% FBS, 100 µg/µL streptomycin, 100 units/mL penicillin, 20 
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µg/mL fungizone, and 50 µg/mL GS. The cell suspension was centrifuged at 200g for 5 

min and the cell pellets were re-suspended in 12 ml of primary medium (DMEM 

supplemented with 10% FBS, 100 units/mL penicillin, 100 µg/mL streptomycin, 50 

µg/mL GS, and 250 ng/mL fungizone), aliquoted into T-75 flasks and maintained in a 

humidified 5% CO2 incubator at 37 °C. Cultures were washed with PBS and replaced 

with fresh media at 3 and 7 days to remove unattached cells. Cells were rinsed with PBS, 

enzymatically lifted with 25 µL/cm
2
 0.05% trypsin/ 0.53 mM EDTA and centrifuged at 

200g for 5 min. The third passage cells were used for cell culture experiments. Cell 

attachment to the nanofiber mesh was done with undifferentiated MSCs cultured in the 

primary medium.  

EPCs were isolated from the bone marrow of young male Wistar rats (6-8 weeks). 

After euthanasia, the femurs and tibias were aseptically excised from the hind limbs and 

washed in DMEM medium. To expose the marrow cavity, the distal end of tibia and 

proximal end of femur were cut off. Small holes were bored in the other end of bone with 

18 gauge needle. Next, the bone marrow was flushed out by gently flushing the inside of 

the bones with Medium199 supplemented with 20% FBS, 1% Pen/Strep, 1% L-Glu, 1% 

sodium pyruvate and 22.5 µg/ml heparin. Cell clumps were broken up by repeatedly 

pipetting. The cell suspension was centrifuged at 200g for 5 min. Next, the cell pellet was 

re-suspended in the medium199 and plated on rat-derived fibronectin-coated 6-well plate 

(1µg/ml). After 24h, the non-adherent cell population supernatant was recovered and 

transferred to a new fibronectin-coated plate. After another 24h, this procedure was 

repeated to remove rapidly adherent hematopoietic cells or mature EC being possibly 

present in the aspirate. Only the non-adherent cell population harvested after 48 h was 
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evaluated further in all experiments.  

MSCs and EPCs were characterized by immunostaining of specific surface 

markers. Isolated MSCs and EPCs were fixed with 4% paraformdehyde for 30 min, 

permeabilized with 0.1% Triton X-100 and 100 mM glycine in PBS (pH 7.4) for 1 h and 

blocked with blocking solution including 1.5% BSA and 0.5 mM glycine in PBS for 2 h. 

The primary antibodies used for MSCs characterization are CD73, CD90, VE-cadherin, 

and vWF. The primary antibodies used for EPCs characterization are VE-cadherin, vWF, 

PECAM-1, Flk-1, CD73, and CD90. The primary antibodies diluted in blocking solution 

for 1:100 and incubated with cells for 12–16 h at 4 °C. Secondary antibodies (Alexa 

fluor
®

 488, 593 obtained from Molecular Probes, Invitrogen) were used at 1:100 dilutions 

in blocking buffer for 2 h at room temperature in the dark. Nuclei were stained with 

DAPI (4, 6-diamidino-2-phenylindole, 100 ng/ml). Images of the cells were visualized by 

using a fluorescence microscope (Zeiss LSM 510 Meta CSLM).  MSCs characterization 

results were presented in Figure 4.4. 

The microtubes were sterilized by ultraviolet radiation for 12 h with a mercury 

UV lamp (Black-Ray, 365 nm, 100 W; UVP, Upland, CA), followed by immersing in 

70% ethanol for 30 min and washing three times with sterile PBS. The microtubes were 

conditioned by immersion in primary culture media for 1 h prior to cell seeding. In order 

to form vasculogenesis,  EPCs/MSCs were mixed (1:1) in Matigel (derived from a mouse 

sarcoma line)- PBS (1:1 mixture) and 5 µl of cell-matrigel suspension were injected 

inside the microtubes and cultured in EBM-2 medium containing vascular endothelial 

growth factor (VEGF), human fibroblast growth factor-B (hFGF-B), insulin like growth 

factor-1 (IGF-1), human epidermal growth factor (hEGF), ascorbic acid hydrocortisone, 
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gentamycin, amphotericin B and cultured in a humidified 5% CO2 incubator for up to 12 

days. Prior to experiment, EPCs were stained with cell tracer and MSCs were stained 

with Calcein-AM. After 12 days of culturing, construct images of the cells were 

visualized using a confocal microscope (Zeiss LSM 510 Meta CSLM).   

5.2.4 VASCULOGENIC DIFFERENTIATION OF MSCs/EPCs IN MICROTUBES 

The DNA and total collagen content in EPC/MSC seeded microtubes were 

measured after 3, 6, and 12 days of culture. At each time point, cell-seeded microtubes 

were washed with serum-free DMEM for 8 h to remove serum components, then washed 

with PBS, lysed with 10 mM Tris supplemented with 0.2% triton in PBS and used for the 

measurement of DNA content and total collagen content. The double-stranded DNA 

content of the samples was determined by using a Quant-it PicoGreen assay (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instruction. An aliquot (100 µl) of the 

working solution was added to 100 µl of the cell lysate and incubated for 4 min at 

ambient conditions. The fluorescence was measured with a Synergy HT plate reader 

(Bio-Tek; Winooski, VT) at emission and excitation wavelengths of 485 and 528 nm, 

respectively. Collagen production was analyzed by SIRCOL collagen assay kit protocol 

(Biocolor, Newtownabbey, UK) in the supernatants  after 7, 14 and 28 days of cell 

culture in microtubes. The collagen containing supernatant from the culture was mixed 

with 1 mL of Sircol dye for 30 min and centrifuged at 10,000 rpm for 5 min to precipitate 

the collagen–dye complex. After decanting the suspension, pellets were dissolved in 1 

mL Sircol alkali reagent and vortexed. Subsequently, 100 μl of the acquired solution was 

read at 555 nm. The amount of collagen was calculated based on a standard curve of 
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Sircol Rat Collagen Reference Standard (Biocolor). Cell lysate solution was used as a 

negative control.  

5.2.5 mRNA ANALYSIS OF MSCs/EPCs IN MICROTUBES 

At each time point for vasculogenic differentiation samples, total cellular RNA 

was isolated using TRIzol (Invitrogen, Carlsbad, CA) plus RNeasy Mini-Kit (Qiagen, 

Valencia, CA) according to the manufacturer’s instructions. The qualitative and 

quantitative analysis of the RNA samples was performed with NanoDrop 2000 (Thermo 

Scientific, Waltham, MA). A 1 µg quantity of the extracted total RNA was subjected to 

cDNA conversion using the Reverse Transcription System (Promega, Madison, WI). 

Primers for real-time PCR (RT-qPCR) analysis were designed and selected using the 

Primer3 web-based software as described elsewhere [125]. RT-qPCR was performed to 

analyze the differential expression of platelet/ endothelial cell adhesion molecule 1 

(PECAM-1), von Willebrand homology (vWF), vascular endothelial-cadherin (VE-

cadherin), and endothelial-specific receptor tyrosine kinase (Tie-2) genes with SYBR 

green RealMasterMix (Eppendorf, Hamburg, Germany) using a Bio-Rad iCycler machine 

(Bio-Rad, Hercules, CA) and iCycler optical interface version 2.3 software. The forward 

and reverse primers were synthesized by Integrated DNA technologies (Coralville, IA) 

and shown in Table 1. Quantification of gene expression was based on the crossing-point 

threshold value (CT; number of cycles required for the RT-qPCR fluorescent signal to 

cross the threshold) for each sample. This was evaluated by the Relative Expression 

Software Tool [198] as the average of three replicate measurements. The expression of 

glyceraldehyde-3- phosphate dehydrogenase (Gapdh) house-keeping gene was used as 

the reference. The relative gene expression level was compared to that at time zero using 
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2^-ddCT method [199].  

Table 2 Forward and reverse sequences of the PCR primers. 

 
Genes                                   Forward Primer                                  Reverse Primer   

PECAM-1         5`-CGAAATCTAGGCCTCAGCAC-3`         5`-CTTTTTGTCCACGGTCACCT-3` 

VE-cadherin     5`-GCACCAGTTTGGCCAATATA-3`         5`-GGGTTTTTGCATAATAAGCAGG-3` 

vWF                  5`-GCTCCAGCAAGTTGAAGACC-3`         5` -GCAAGTCACTGTGTGGCACT–3` 

Tie-2                 5`-CCGTGCTGCTGAACAACTTA-3`          5`-AATAGCCGTCCACGATTGTC-3` 

GAPDH            5`-CGA CCT GGA AGT CCA ACT AC-3`   5`-ATC TGC TGC ATC TGC TTG-3` 

 

5.2.6 STATISTICAL ANALYSIS 

The results are presented as averages and standard errors. Significant differences 

between two groups were evaluated using a two-tailed Student’s t-test. A value of p < 

0.05 was considered statistically significant. 

5.3 RESULTS AND DISCUSSION 

The interconnected network of the cortical bone is composed of a set of 

microtubular osteons. In this study, the osteon structure was mimicked by fabricating the 

CaP nucleated NF based microtubes. The fabricated microtubes were evaluated with 

respect to the effect of scaffold morphology on vasculogenesis of MSCs/EPCs.  The 

osteogenic and vasculogenic differentiation of MSCs and EPCs/MSCs on nanofibers 

were previously shown [93, 200]. However the effect of the morphology of the scaffold 

on vasculogenic differentiation has not yet been studied. Consequently, the objective of 

this study was to determine the in vitro vasculogenic potential of EPCs/MSCs in different 

diameter microtubes. The microtubuler structure of the biofabricated scaffolds ideally 

mimics the osteons structures of bone tissue [184]. 

The immunohistochemistry images of EPCs for specific positive and negative 

markers are shown in Figure 5.2. The results indicated that EPCs showed positive 
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expression of VE-cadherin, vWF, PECAM-1, and Flk-1.  However, there was no 

expression of CD73 and CD90. These results are consistent with the previously reported 

results. 

 

 

The effect of MSCs and EPCs co-culture on vascular structure formation was 

investigated. EPCs, MSCs, and EPCs/MSCs one to one ratio co-culture were 

encapsulated in Matrigel and cultured in vasculogenic media for 7 days. Figure 5.3a, 

5.3b, and 5.3c shows the MSCs, EPCs, and MSCs/EPCs (1:1 co-culture), respectively. 

The results demonstrated that only MSCs/EPCs co-cultered formed vascular like 

structures when cultured in vasculogenic media for 7 days. These results are consistent 

with the previously reported results [194-196]. 

 

 

 

Figure 5.1 The immunohistochemistry images of EPCs stained with CD31 (a), VE-

cadherin (b), Flk-1 (c), vWF (d), CD73 (e) and CD90 (f). Scale bar is 100 µm.  
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EPCs/MSCs (1:1) were seeded in GLU-NF/CaP50 0.35 mm, and 0.8 mm 

microtubes by mixing (1:1) Matrigel/PBS and cultured in vasculogenic media for 12 

days. DNA content and total collagen content of the EPCs/MSCs as a function of 

incubation time are shown in Figure 9a, and b. The time points for vasculogenic 

differentiation of EPCs/MSCs were 3, 6, and 12 days. The results indicated due to the 

lower surface area of the 0.35 mm microtubes, the DNA content was significantly lower 

than 0.8 mm microtubes. The total collagen production in 0.35 and 0.8 mm microtubes 

are shown in Figure 9b. The results indicated that the inner diameter of the microtubes 

did not affect the collagen secretion of MSCs/EPCs when seeded inside the microtubes 

significantly. Therefore, the expression levels of vasculogenic markers were only 

measured in 0.8 mm microtubes. For example, the collagen production of EPCs/MSCs in 

0.35mm and 0.8 mm microtubeswas 132.1±7 and 130.1±9.7 μg Collagen/μg DNA after 

12 days, respectively. In addition, the total collagen content was increased in different 

diameter microtubes with the increase of incubation time.  

 

 

Figure 5.2 Confocal microscopic imagesof MSCs (a, green), EPCs (b, red), MSCs/EPCs 

cocultured in 1:1 ratio (c) encapsulated in Matrigel and cultured for 7 days in 

vasculogenic media.  EPCs and MSCs initially stained with cell tracer and calcein AM. 

Blue, green and red represents cell nuclei, MSCs and EPCs, respectively.   
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A number of early and late stage markers associated with vasculogenic 

differentiation in vivo were used in this study to characterize the rat EPCs/MSCs at 

mRNA levels, which included CD31/Pecam1, VE-cadherin (CD144), Tie2, and von 

Willibrand factor (vWF). Platelet/endothelial cell adhesion molecule is a transmembrane 

protein expressed abundantly early in vascular development  may mediate leukocyte 

adhesion and migration, angiogenesis, and thrombosis [201]. The other early-stage 

differentiation marker VE-cadherin, a member of the cadherin family of adhesion 

receptors, is a specific and constitutive marker of endothelial cell that plays an important 

role in early vascular assembly. Vascular markers that are expressed at a later stage 

include vWF and Tie2 [188, 202]. Tie2 is a receptor kinases that is vital for vascular 

 

 

Figure 5.3 DNA content (a) and total collagen amount (b) of differentiating BMS+EPC 

cells seeded inside GLU-NF/CaP50 0.35 and 0.8 mm microtubes by mixing matrigel and 

cultured in vasculogenic media. Time points include 3, 6, and 12 days.  Error bars 

correspond to means ±1 SD for n = 3.  
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development and remodeling in the embryo and functions on maintenance and repair of 

vascular system [202]. In late phases of vasculogenesis, the mature endothelial cells will 

synthesize and secrete vWF homolog, a plasma protein that mediates platelet adhesion to 

damaged blood vessels and stabilizes blood coagulation factor VIII [203]. In order to 

investigate the expression pattern of key vasculogenic gene markers of EPCs/MSCs in 

microtubes, the expressions of Pecam1, Ve-cadherin, Tie-2 and vWF were analysed at 

mRNA level by real-time PCR. RT-qPCR results showed that vasculogenic 

differentiation of EPCs/MSCs in vasculogenic culture conditions for 12 days resulted in 

an increased expression of vasculogenic gene markers. The peak expression of vWF, Ve-

cadherin and Tie-2 occurred around 12 days (over 350, 90 and 110 fold), indicating that 

the differentiating EPCs/MSCs gained the biosynthetic activity of differentiated and 

matured endothelial cells. The upregulation of Tie-2 after 3 days might indicate the 

development of the vasculogenic structure. Similar to our results, Valarmathi et. al. 

demonstrated that vasculogenic differentiation of MSCs in vasculogenic culture 

conditions when seeded and cultured in collagen microtubes for 28 days resulted in 

increased expression of Pecam1, Kdr, Tie-2 and vWF. They indicated that the peak 

expression of vWF around day 21 (over 400 fold) showing that the differentiating cells 

became matured endothelial cells and the upregulation of Tie-2 related to development of 

the microvessels [188]. Enhanced Pecam-1, VE-cadherin and Tie-2 expression levels in 

microtubes culture indicates that tubular formation of the scaffold supported vasculogenic 

formation of EPCs/MSCs in matrigel. These results were consistent with the collagen 

content results, where EPCs/MSCs in microtubes had increased amount of collagen 

content as a function of incubation time.  
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5.4 CONCLUSION 

In this study, our objective was to investigate the vasculagenic differentiation 

potential of MSCs/EPCs co-culture in different diameter microtubes fabricated via a 

novel biofabrication technique. Extensive in vitro characterization indicated that the 

microtubular scaffolds are not only able to support cell attachment and proliferation, but 

also to provide an environment which enables vasculogenic differentiation of 

MSCs/EPCs. This was confirmed by the enhanced collagen content and expression of 

principal vasculogenic genes. Present findings demonstrate that the 3D structure of 

microrubular scaffolds provide a promising microenvironment that enables 

vascularization. Overall, the comp;ete results in Chapter 4 and Chapter 5 demonstrates 

that the microtubular scaffolds can support osteogenesis and vasculogenesis of MSCs and 

 

 

Figure 5.4 mRNA expression levels (as fold difference) of platelet endothelial cell 

adhesion molecule (a, pecam-1 ) (a), VE-cadherin (b), Tie-2 (c), and Von Willibrand 

factor (d, Vwf) of the MSCs/EPCs (1:1), cells seeded inside 0.8 mm microtubes by 

mixing matrigel and cultured in vasculogenic media.. Time points include 3, 6, and 12 

days. Error bars correspond to means ±1 SD for n = 3.  
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MSCs/EPCs co-culture. Therefore, these scaffolds can be a good candidate for bone 

tissue engineering applications. 
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CHAPTER 6 

CONCLUDING REMARKS 

The aim of this work is to fabricate osteon-mimetic nanocomposite scaffolds to be 

used as a suitable synthetic matrix in bone tissue engineering applications. The main goal 

of bone tissue engineering is to develop bone mimetic scaffolds seeded with 

mesenchymal stem cells to regenerate bone defects. Bone tissue engineering scaffolds 

required to have specific features such as easy to implant, appropriate physical and 

mechanical properties, biodegradable, osteoconductive, biocompatible and cost effective. 

Due to the reason that tissue engineered scaffolds will be used to treat the complex bone 

defects, these scaffolds should possess similar structural and functional properties of bone 

tissue. The cortical bone tissue composed of osteons that have microtube like structures 

with a central vascular channel inside for ensuring suitable nutrient/waste transport to the 

bone tissue. Laminated multilayers of apatite deposited collagen fibers forms the osteon 

microtubes. The apatite nanocrystals provide osteoconductivity and stiffness while the 

collagen fibers provide elasticity and a template for mineralization and maturation of 

osteoprogenitor cells. Unique factors that contribute to bone toughness are the aligned 

network of collagen fibers, apatite nanocrystals, and proteins in the bone extracellular 

matrix (ECM) that link the apatite crystals to the collagen fibers. In this work, calcium-

phosphate nucleated polymeric nanofibers were used to mimic the morphology of the 

bone tissue and the effect of calcium phosphate (CaP) deposition on aligned nanofibers 

surface-modified with EEGGC glutamic acid peptide on osteogenic differentiation of rat 
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marrow stromal cells was investigated. In order to increase CaP to fiber ratio, a layer-by-

layer approach was used to improve the diffusion of calcium and phosphate ions inside 

the microsheets. CaP to fiber ratio of the microsheets increased from 50% for a single 

fiber layer to 200% for the LBL microsheet with the same overall thickness when 

incubated in a modified SBF medium. Results demonstrate that surface modification of 

nanofibers with GLU peptide dramatically increased nucleation and growth of CaP 

nanocrystals on the fiber surface, leading to significantly higher differentiation of MSCs 

and mineralized matrix formation. Developed calcium-phosphate nucleated nanofiber 

microsheets with an array of macropores to enhance diffusion of nutrients were used to 

fabricate osteon-mimetic microtubular scaffolds. The microtubes fabricated by wrapping 

CaP deposited nanofiber layers around the stainless steel needles upon annealing above 

glass transation temperature (Tg).  The osteogenic and vasculogenic differentiation 

potential of MSCs and MSCs/EPCs when seeded into microtubes were invetigated. Our 

results indicate that the 3-D microtubes provide a promising microenvironment that 

enhances osteogenesis and vascularization. Overall, apatite nucleated electrospun 

nanofibers and the microtubes fabricated out of these nanofiber microsheets shows 

promising results for clinical usage of these materials as an engineered scaffold. To 

continue this work, it is necessary to characterize the compressive mechanical properties 

of the fabricated microtubular bundles in order to determine the effective implantation 

sites. Furthermore, bone regeneration by using microubular scaffolds should be evaluated 

in vivo by animal model including femoral defect, cranial defect or subcutaneous 

implantation. To do that, the microtubular scaffolds should be cultured in a perfusion 

bioreactor after seeding with MSCs and implanted in a critical size bone defect. X-rays 
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and histomorphometric analysis can be used to further characterization of the forming 

bone tissue and quantitatively determine the osteoconductivity of the scaffolds. The 

potential of osteon-mimetic scaffolds for bone regeneration showed in this work will be 

beneficial for clinical development.  
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