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ABSTRACT

Computational models play an important role in scientific discovery and engineering
design. However, developing computational models is challenging, since the process
always follows a path contaminated with errors and uncertainties. The uncertainties
and errors inherent in computational models are the result of many factors, including
experimental uncertainties, model structure inadequacies, uncertainties in model pa-
rameters and initial conditions, as well as errors due to numerical discretizations. To
realize the full potential in applications it is critical to systematically and economi-
cally reduce the uncertainties inherent in all computational models.

The update and development of computational models is a recursive process be-
tween data assimilation and data selection. In data assimilation, measurements are
incorporated into computational simulations to reduce the uncertainties of the model
and in reverse, the simulations help determine where to acquire data such that most
information can be provided.

Currently, data assimilation techniques are overwhelmed by data volume and ve-
locity and increased complexity of computational models. In this work, we develop
a novel data assimilation approach EnLLVM which is based on linear latent variable
model. There are several advantages of this approach. First, it works well with high
dimensional dynamic systems, but only requires a small number of samples. Second,
it can absorb model structure error and reflect the error in the uncertainty of data
assimilation results. In addition, data assimilation is performed without calculating
likelihood of observation, thus it can be applied to data assimilation problems in

which likelihood is intractable.
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Obtaining informative data is also crucial, as data collection is an expensive en-
deavor for a number of science and engineering fields. Mutual information, which
naturally measures information provided about one quantity by knowing the other
quantity, has become a major design metric and has fueled a large body of work
on experimental design. However, estimating mutual information is challenging and
results are not reliable in high dimensions. In this work, we derive a lower bound
of mutual information, which is computed in much lower dimensions. This lower
bound can be applied to experimental design as well as other problems that require
comparison of mutual information.

At last, we develop a general framework for building computational models. In
this framework, hypotheses about unknown model structure are generated by using
EnLLVM for data assimilation and lower bound of mutual information for finding
relations between state variables and unknown structure function. Then, different
hypotheses can be ranked with model selection technique. This framework not only
provides a way to infer model discrepancy, but also could further contribute to sci-

entific discoveries.
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CHAPTER 1

INTRODUCTION

Computational science and engineering has now become the third pillar of scientific
inquiry and engineering design along with theory and experimentation [18]. Compu-
tational simulations provide insights into the physical and chemical processes [77, 36]
and are also used for solving engineering problems, such as condition-based mainte-
nance of aircraft systems [80]. They are also instrumental in informing policy decisions
in areas where the consequences of inaccurate predictions and poorly informed deci-
sions could be catastrophic, such as disaster response due to contaminant release [71]
and climate change [48]. These computational models are more complex than ever
and increasingly operate at higher resolutions with more degrees of freedom.

The central challenge in developing computational models for scientific discovery,
engineering design, or decision support is that the process follows a path contaminated
with errors and uncertainties. The uncertainties and errors inherent in computational
models are the result of many factors, including experimental uncertainties, model
structure inadequacies, uncertainties in model parameters and initial conditions, as
well as errors due to numerical discretizations. To realize the full potential in such
applications it is critical to systematically and economically reduce the uncertainties
inherent in all computational models.

A typical framework for model update and development integrates measurements
with application simulations using a synergistic feedback and control-loop between
the two, see Fig.1.1. Measurements are dynamically incorporated into computational

simulations to reduce the uncertainties of the model and in reverse, the simulations



dynamically steer the measurement process [23]. This recursive process will lead to
a well-developed computational model that can help accelerate scientific discoveries

and decision-making under uncertainty.
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Figure 1.1: Computational Framework
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1.1 DATA ASSIMILATION

Data assimilation is concerned with inferring certain quantity of interest (Qol). This
Qol includes state variables of a dynamic system as well as unknown parameters
in the computational model. The inference involves running computer simulations
and solving inverse and forward problems. Generally, there are two categories of ap-
proaches, optimization methods and Bayesian inference. The optimization methods
provide a single point estimate of unknown parameters by minimizing the discrep-
ancy between model predictions and observational data. While Bayesian inference
formulate the problem in a Bayesian framework where quantities have probabilistic

description and posterior distribution of Qol can be obtained via Bayes rule. The ad-



vantage of Bayesian inference is the incorporation of prior information and the access
to the full posterior distribution from which estimates with quantified uncertainties
can be extracted. In this work, we employ probability to represent uncertainty and
Bayesian inference to update the uncertainty of Qol in light of measurement data.

If the dynamic system is linear and the uncertainty involved can be described
with Gaussian distribution, there is a closed-form solution for posterior distribution.
It can be obtained by Kalman filter [47]. However, in most cases, the precondition
for applying Kalman filter cannot be satisfied. Different assumptions and approxi-
mations have been made for quasi-optimal solutions maintaining both accuracy and
tractability. Among the best understood and most frequently cited nonlinear filters
are the Extended Kalman Filter (EKF), the Ensemble Kalman Filter (EnKF), the
Unscented Kalman Filter (UKF), and the Particle Filter (PF). The EKF is based
on the assumption that over small time increments, nonlinear system dynamics can
be accurately modeled by a first-order Taylor series expansion [22]. However, when
the process model and observation model are highly non-linear, EKF can give par-
ticularly poor performance [45]. The UKF, which is a derivative-free alternative to
EKF, bypasses differentiation by using a deterministic sampling approach [45, 84].
The EnKF is a reduced rank sampling filter which propagates the states through the
system nonlinearities and updates a relatively small ensemble of samples from which
an assumed Gaussian distribution which captures the main characteristics in the un-
certainty is estimated [33]. Due its simplicity in both theory and implementation,
EnKF has been widely used, especially in meteorology where high dimensional data
assimilation is performed. Unlike EnKF, PF achieves a complete Bayesian inference.
It uses a sampling approach, estimating the posterior probability distribution, includ-
ing its higher order moments, by propagating and updating a number of particles,
without the assumption of Gaussian statistics [70].

Another commonly used approach is Markov Chain Monte Carlo (MCMC). MCMC



is also a sample-based method and has become a important computational workhorse
in scientific computing for sampling from a large class of distributions. The most ba-
sic form of MCMC is Metropolis-Hastings (MH) algorithm [62, 4], which generates a
sequence of correlated samples that form a Markov chain. A good estimate usually
requires large number of samples and takes much longer time than other approaches.

For high dimensional data assimilation, sampling-based methods usually suffer
from curse of dimensionality. In this work, a novel filtering method is proposed to
deal with this problem. The details of this method will be given in Chapter. 2. And

in Chapter. 5, the proposed method will be applied to develop predictive models.

1.2 DATA SELECTION

Measurement data play a crucial role in developing models of physical systems. But
not all measurements contain equal amount of information. Some data are more valu-
able, while others may help little in developing models. To select data strategically is
of significance as data can be difficult and expensive to acquire. For example, exper-
imental data collection in biological systems is usually a time consuming and costly
operation due to its high reliance on human resources and specialized equipment. As
a result, strategies based on design of experiments are needed to judiciously perform
data collections that meet various constraints of biological experiments [56].

Data selection is usually decided by running simulations and maximizing certain
target function. There are various choices towards the target function. It can be
Mean Square Error (MSE), mutual information, entropy or measurements about in-
verse moment matrix in A-, D-, E-optimal design. Among all these criteria, mutual
information is most common used, since it is a natural measure of dependence between
the two quantities and others can be derived from it either directly or indirectly.

Estimating mutual information from samples is challenging. Some commonly used

estimators include histogram based estimator, kernel density estimator, and k-nearest



neighbor estimator (kNN). In their survey, Walters-Williams and Li [83] show that
parametric estimation usually outperform non-parametric estimation when data is
drawn from a known family of distributions. However, this is not the case in most
practical problems. Khan et al. [51] compare different estimators that quantify the
dependence between random variables, and show that the kNN estimator of mutual
information captures better the nonlinear dependence than other commonly used
estimators.

Although kNN estimator provide good estimate in low dimensions, it works poorly
in high dimensions due to the scarcity of samples. This issue is not directly addressed
in the past literature. In Chapter. 3, we propose an approximate approach to select
data. Instead of maximizing mutual information directly, we derive a lower bound
of mutual information, which can be computed in a much lower dimension. This
lower bound of mutual information is also applied in Chapter. 5 to measure relation

of functions.



CHAPTER 2
ENLLVM: FAST BAYESIAN INFERENCE FOR HIGH

DIMENSIONAL PROBLEMS

2.1 INTRODUCTION

Bayesian filtering is concerned with inferring certain quantity of interest (Qol). This
Qol includes state variables of a dynamic system as well as unknown parameters in
the computational models. The inference involves running computer simulations and
solving forward and inverse problems. For a linear system, under the assumption of
Gaussian probability distributions, the problem of estimating the states of the system
has an exact closed-form solution given by the Kalman filter [47]. If the probability
distributions are non-Gaussian or the system is nonlinear, in general no closed-form
solutions are available. Different assumptions and approximations have been made
for quasi-optimal solutions maintaining both accuracy and tractability. Among the
best understood and most frequently cited nonlinear filters are the extended Kalman
filter (EKF), the unscented Kalman filter (UKF), the ensemble Kalman filter (EnKF),
and the particle filter (PF).

The EKF is historically the first, and still the most widely adopted approach to
nonlinear state estimation problems. It is based on the assumption that over small
time increments, nonlinear system dynamics can be accurately modeled by a first-
order Taylor series expansion [22]. However, when the process model and observation
model are highly non-linear, EKF may give extremely poor performance [45]. The

UKF, which is a derivative-free alternative to EKF, bypasses differentiation by us-



ing unscented transformation (UT) [45, 84, 74]. In UT, a relatively small number
of representative points are selected to approximate the distribution of a Gaussian
variable after a nonlinear transformation and the accuracy of the UT approximation
decreases as the dimensionality increases [74].

The EnKF is a reduced rank sampling filter which propagates the states through
the system nonlinearities and updates a relatively small ensemble of samples from
which an assumed Gaussian distribution which captures the main characteristics in
the uncertainty is estimated [33]. Due to its simplicity in both theory and implemen-
tation, EnKF has been widely used, especially in meteorology [40, 41] where high
dimensional data assimilation is performed.

The Kalman filter variations discussed above all approximate posterior densities
as Gaussians. For nonlinear, non-Gaussian systems, particle filter has significant
advantages. The particle filter uses a Monte Carlo sampling approach, estimating
the posterior probability distribution, including its higher order moments, by prop-
agating and updating a number of particles, without the assumption of Gaussian
statistics [70]. Compared with Kalman filter variations, particle filter works with any
arbitrary prior distributions and is capable to capture multimodality of the poste-
rior distribution. However, particle filter has mostly been applied to low dimensional
problems. Snyder et al. [73] points out that particle filter has the tendency to col-
lapse and for a good estimation, it is required that the number of samples scales
exponentially with the problem size.

To cope with high dimensional problems, variations of particle filter have been
developed. One class is multiple particle filter [26, 14, 1]. The core idea of multiple
particle filter is using standard particle filters to update state variables in subspaces.
In this way high dimensional filtering is converted to a bunch of lower dimensional
problems which is easy to deal with and requires a smaller number of particles. How-

ever, since most of the time different states are coupled in process model, updating



in each particle filter requires propagating particles from other states. This approach
completely ignores joint distribution even though coupled states are dependent. Also
problems will arise when states are coupled in the observation model or only partial
states are observable. Nakano et al. [63] proposed a merging particle filter (MPF)
to avoid the collapse problem in standard particle filter. The performance of MPF,
PF and EnKF are also compared by applying them to a 40-dimensional nonlinear
dynamic system. The results show that as the number of samples increases, MPF
converges faster than PF and after a certain number of samples they will both outper-
form EnKF. However, for a relatively small number of samples, for example N < 256
which is tested in their experiments, EnKF works much better than MPF and PF.
Another class of filters that aim at capturing multimodality is Gaussian sum filter.
In Gaussian sum filter, arbitrary prior distribution is approximated with Gaussian
mixture. Then each component of the mixture is updated though Kalman filter or its
variations [74, 78|, and the consequential posterior distribution is also represented by
Gaussian mixture. A different way to combine Gaussian mixture models with EnKF is
proposed in [27], where each ensemble member is updated through Gaussian mixture
models and the updated ensemble is proved to be capable of capturing multimodality.
The drawback of Gaussian mixture models is obvious. First, the mixture models are
estimated from samples, which usually requires a large number of samples. Moreover,
the estimation includes specifying various parameters such as weight and statistics of
each Gaussian component, which is nontrivial and can be computationally expensive.
Stordal et al. [75] bridged EnKF and PF through an adaptive Gaussian sum
filter. Basically, EnKF is equivalent to the Gaussian sum filter which takes sample
covariance as covariance for each Gaussian kernel and has uniform weights. When
model error is added, particle filter can also be viewed as the Gaussian sum filter
whose Gaussian component has zero covariance. Stordal et al. [75] also pointed out

that increasing the variance of model noise in particle filter can force the weights to



be more uniform so as to avoid filter collapse.

Often, general formulations that exploit the structure of physics-based models by
using internal discrepancies to capture structural errors yield intractable likelihood
functions. In fact, in many cases, the distribution of observation noise is unknown,
and the observation model is viewed as a black box which outputs observation data
given the input states. These problems make particle filter, EnKF unsuitable as they
rely on computation of likelihood functions.

In this paper, we propose a novel Bayesian filtering approach which only requires
a small number of samples even in high dimensional systems. The proposed method
is based on linear latent variable models. Samples are first mapped into latent space
which has a much lower dimensionality. Then update is performed in the latent
space and posterior samples are mapped back to the original space. The proposed
approach doesn’t require Gaussian distribution assumption and is able to capture
multimodality. Moreover, the method is performed without evaluating likelihood of
observations, thus it can be applied to data assimilation problems in which likelihood
is intractable. Other filtering methods mentioned above require direct computation of
likelihood functions. In this paper, the proposed method is assessed on two nonlinear
dynamic systems and also compared with EnKF on various scenarios.

The rest of paper is organized as follows. In section 2, the proposed method is
detailed. The method is not restricted to a particular type of linear latent models and
several options are provided. In section 3, two numerical experiments are performed
to assess its predictability, which includes comparisons with EnKF on several different

scenarios.

2.2 METHODOLOGY

Consider the following general parameterized nonlinear dynamical system perturbed

by process noise w, measurement noise v; and uncertain initial conditions. Given



a set of measurements, the goal is to infer the state of the system and parameters to

improve model predictions and as a result decision making under uncertainty.

Xk+1 — f(Xk, 9, Wk) (21)
dk = h(Xk, 0, Vk) (22)
Xo ~ p(Xo) (2.3)

Civen a set of observation Dy, = {d,|1 < i < k}, Bayesian filtering is the problem
of finding the joint probability density function (pdf) of the states x; and parameters 6
conditioned on all the observations up to and including current time t, p(xx, @ | Dy).

The posterior pdf, p(xx, 8 | D), may be obtained recursively using Bayes’ rule:

p(ak | XkaeaDk—l)p(X]me | Dk—l)
p(di | Dy-1)

In Eq.(2.4), p(dy | xz,0,D_1) is the likelihood function, p(dj | Ds_1) is the

normalization constant known as the evidence and the prior pdf p(x, 0 | Dy_1) is

obtained as follows:

p(xk:0 | Di1) = [ p(xic | 41, 0)p(x11,6 | Dy )by (2.5)

where p(xj_1,0 | Dg_1) is posterior pdf at time ¢;_; and p(x; | xx_1,0) can be
obtained through Eq. (2.1).

If f(e) and h(e) are both linear models and all the probability distribution in-
volved are Gaussian, then Bayesian filtering can be easily solved with Kalman filter.
Otherwise, methods based on Monte Carlo samples are commonly adopted. How-
ever, current data assimilation methods suffer from the curse of dimensionality and
struggle to deal with intractable likelihood functions. In general nonlinear dynamical
systems, the measurement noise might not be explicitly presented in Eq. (2.2), it can
be embedded into the observation model with unknown distribution, which makes it

impossible to create likelihood function for EnKF and particle filter.

10



In this paper, we tackle Bayesian filtering from a different angle. Instead of relying
on Eq. (2.2) to calculate likelihood, we operate on the joint distribution of x;, 8 and
d;. directly. For simplicity, in the followings, all the quantities of interest (Qols) at

any time k will be denoted by qy.
qr = [Xk, B]T (26)

Furthermore, let qj1x denote q which is obtained through Eq. (2.1) after observing
D, but before dj, ;. Thus P(Xp11, 0 | D) can be written as p(qgy1jx). Similarly, let
dj1)x denote d which is obtained by propagating qx1x through Eq. (2.2).

Assume there is a joint distribution p(qg4 1k, drs1jx), then posterior pdf of g1k
given dj,_1 is the conditional distribution (Ut 1k | &k+1) which is denoted by Qp1|k+1-
Since there are no analytical forms for these distributions, they have to be estimated
with Monte Carlo samples. This means that at any time k the uncertainty in the

Qols given the observation set Dy, is described by a set of NV samples.

q]ig|k; ~ p(Qk|k>, fore=1...N (2'7)

These samples are propagated through dynamics in Eq. (2.1) to obtain predictive
samples at time k + 1, {q,i+1|k}i:1,__N. Then {q,iJrl‘k}i:l,,_N are propagated through
Eq. (2.2) to obtain {d2+1|k}i:1...N- Given the measurement d_, the goal is to ob-
tain N samples, {q,i+1|k+1}i:1mN, from the posterior pdf of the Qols, p(Qrt1je+1)-
The whole flow is shown in Fig. ??. The input of our method are {q,iJrl‘k}i:l,,_N,
{d2+1|k}i:1...N and dy.1, and the expected output is {qli+1\k+1}z‘:1...N-

If [Qkt1)k, dig1)i] follows multivariate Gaussian distribution, p(qp41 | ak+1) can be
easily obtained [28]. If it is not Gaussian, we can still approximate it with a Gaussian
distribution, and obtain conditional distribution. But in this case, the conditional
distribution is likely to be inaccurate. As is shown in Fig. 2.1, a single Gaussian
distribution is unable to capture multimodal property of samples and may lead to

unreliable estimation of posterior p(qk+1|ak+1).

11
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Figure 2.1: Fig.(a) shows Monte Carlo samples of p(Qx1jk, drs1x). The goal is to
calculate conditional distribution given dy.;. Fig.(b) shows Gaussian approximation
of p(dk+1jk, dkt1%) and consequential conditional distribution.

We can also estimate the probability density p(qk+1|k, dk+1|k) from Monte Carlo
samples. However, if only a small number of samples are available and [q1k, d-41k]
is in high dimensional space, then probability density estimation (PDE) will suffer
badly from the curse of dimensionality. In this paper, we construct p(Q 1k, di41jk)

based on linear latent variable models and perform Bayesian inference in latent space.

2.2.1 LINEAR LATENT VARIABLE MODEL

The linear latent variable model (LLVM) is shown in Eq. (2.8). W is a coefficient
matrix, z is the latent variable, p is bias and 7 is the noise. Assume qp41)x and dy11x
have a dimensionality of H, and H, respectively. Also denote the dimensionality of
the joint space as H, then H = H, + H;. Let M be the dimensionality of latent
variable z. M is supposed to be much smaller than H. The grounds for latent model
is that data points usually lie close to a manifold of much lower dimensionality than

that of the original data space [5].
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[qk+1\kadk+1|k]T = Wz+pu+n (2.8)
zZ N(OaIMXM)

n ~ N(0,¥)

Parameters W, p and ¥ can be obtained with samples {QZ+1\kad§g+1|k}i:1...N via

maximum likelihood estimation.

W, @ = argmax p({ a1y A1 tim1..v W, 2, @)

We may restrict the structure of the parameters, such that the latent space will
preserve certain property from the original data set. This will lead to different linear
latent variable models, which will be discussed later in the paper.

From Eq. (2.8), a density estimator for p(qx41j, dr+1jx) can be easily obtained as
is shown in Eq. (2.9).

A

P(esrjes i) = N(p, %) (2.9)

> = WWi4+w

However, the pdf p(qxi1jk, drt1e) in Eq. (2.9) is still a single Gaussian distribution

which might not be sufficient to describe original samples.

2.2.2 ENSEMBLE LINEAR LATENT VARIABLE MODEL

Here, we introduce an ensemble linear latent variable model (EnLLVM) to replace
the single Gaussian approximation. EnLLVM will lead to a Gaussian mixture which
is supposed to give a better description of original samples. EnLLVM is built in
the following way. For each sample {q,i+1|k, d2+1‘k} of p(Qk+1|k, dit1i), We project it
into the latent space, and there is a corresponding latent variable z; which follows

Gaussian distribution:
Z; ~ N(E[Z|QZ+1|k> d2+1|k]> COV[Z|QZ+1\/¢’ d2+1\k])

13



This process is illustrated in Fig. 2.2. The black dots denote original samples and are
projected into the latent space. For each sample, a corresponding latent variable is
updated, which is denoted by a normal distribution in red. Back to original space,
we will get a Gaussian representation for each sample. This is denoted by a blue
circle. Then p(qk+1‘k,dk+1|k) can be reconstructed by combining all the Gaussian
representations. This will give a Gaussian mixture shown in Eq. (2.10). Since the
model is linear Gaussian, p(z|q;, ko d; +1j5) can be obtained according to the property

of conditional Gaussian distribution [5].

. 1 Y
Den(Ars1jk, dir1je) = N > N (p;, %) (2.10)
i1
K = WE[Z‘QIiﬂum d2+1\k] T (2.11)
i = WCOV[Z|QQ+1|1€7 d2+1\k]WT + W (2.12)

where the mean and covariance of the latent variable are given by

E[Z|Q§€+1\kad§c+1|k] = COV[Z‘quc+1\k7d§c+1|k]WT([q§c+1|k7d;c—l—l\k]T —p) (2.13)

Covlz|dy i dirap) = T + WHETTW) ™ (2.14)

We can also obtain Efz|qj,, dj., ;] and Cov(z|dy ), dj, ] according to the pre-

diction step of Kalman filter, which will give the following result

E[Z|qz+l\k>d2+l|k] = WTE_l([QZHWdZH\k]T_H) (2.15)

Cov[z|qz+1‘k,d};+1|k] = Iyxy — W 'W . (2.16)

Here, X is the covariance of prior distribution p(q1jk, drs1jx), which is given in
Eq. (2.10). These two presentations are equivalent. However, the computational
complexity can be different. As we can see, both representations involve inversion
of a H by H matrix which will cost O(H?). The H by H matrix is ¥ in the first
representation, and ¥ = WW7 +W in the second one. If ¥ is a diagonal matrix, this

inversion will only cost O(H). Although a M by M matrix also needs to inverted,
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M is supposed to be much smaller than H, thus O(M?3) compared with O(H?) is
a big computational saving. In fact, by restricting the structure of ¥, we can have

different latent linear models. This will be detailed in Sec. 2.2.4

dA-:—1|A-A
(1) Projection

(2) Reconstruction

>

i1k

Figure 2.2: Gaussian mixture approximation given by EnLLVM.

2.2.3 PROPERTY OF ENLLVM

Although LLVM is naturally obtained from the latent model, it has a single Gaus-
sian distribution which is unable to capture multimodality. To solve this problem,
EnLLVM is developed. In this section, we will investigate the property of EnLLVM
and compare it with LLVM.

Before making any statement, let’s first examine what g is in the latent model.
All three parameters W, u, and ¥ can be obtained by maximizing the likelihood
function shown in Eq. (2.9). The corresponding log likelihood function is given in

Eq. (2.17).
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In ﬁ({QZ+1|k>d2+1\k}i:1...N | W, u, ‘I’) (2-17)

= Z In p(q§€+1|k7 d;c—l—l\k ‘ W7 K, \Il) (218)
i=1
NM N 1Y i 1 i
= ——1n(27r) - —ln|2| 2 Z([qk—i—ukv dk+1\k] - H)Tz 1([qk+1|k7 dk+1\k] — )
=1
(2.19)

Take the derivative of Eq. (2.19) with respect to p, we have

d In ﬁ({q/’; 1k’d§c Wkti=t.N | W, ¥ 1Y ;
s =5 Y S M (A disap) — 1) (2:20)
i=1

dpe
Set Eq. (2.20) to 0, we can obtain g which is the mean of {qf'ﬂﬂ‘k,d}'f“'k}i:lm]v.
1M .
B=5 ;[q;wl\ka diapp) (2.21)
This means no matter what latent space is, p is always the the mean of original
samples and thus different latent space is only determined by W and ¥. With this
fact, we can get the lemma below.

Lemma 1. EnLLVM provides the same estimate for the mean and covariance
of the samples as LLVM, while it captures higher order statistics as compared with
LLVM.

As shown in Eq. (2.9), the mean and covariance of LLVM is p and X respectively.

So we need to prove the following equations are true.

EenQrt1je: dis1e] = 1 (2.22)

COVen[Qk+1|k> dk+1\k] = X (2.23)

Proof. The mean and covariance of the Gaussian mixture in Eq. 2.10 are calculated
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using the following relations:

1 N
Een[Qk—i—llkadk—i-l\k] = NZIJ’" (2.24)
i—1
1 al T —1 ) 3 T
= NZWW S ([ Digrpel — 1)+ (2.25)
i=1
raf 1 X, -
= Wwix <NZ[QZ+1k,d2+1|k] —H> +p (2.26)
i=1
"
= (2.27)

Eq. (2.26) uses the fact that p equals the mean of original samples. The covariance

of EnLLVM can be decomposed into two parts as is shown below.

1 T
COV@n[Qk+1|k7 dk—l—l\k] = Z [Ei + <ll’i - N) (/J’i - H) ]

N =1
1 i 1 !
= =D N+t <ui - u) <ui - u) (2.28)
N i=1 N i=1
T1 T2
where
T, = W(IMxM — WTE‘1W> w4 o
= T -WWiz'ww’ (2.29)
and
1 , . , . g
T, =WW7'x"! lﬁ ([qz+1|k, dj " — u) <[q2+1k, A" — u) ]
=1
~X
x 2'WwT
=WW7's'ww?’ (2.30)

Substituting Eq. 2.29 and Eq. 2.30 back into Eq. 2.28 we obtain that the covariance

of the EnLLVM approximation coincides with LLVM covariance.

CoVen A1)y Dpgrjp] = X (2.31)

17



So far, we have shown that EnLLVM provides the same estimate for the mean and
covariance of samples as LLVM. As we know, LLVM cannot capture bimodality, since
it gives a single Gaussian approximation. While EnLLVM is a mixture of Gaussian
models, it is supposed to have better performance in capturing higher order statistics.
This is shown in Fig. 2.3. The solid blue circle indicates bimodality of original samples.
The dashed blue circles are components of the Gaussian mixture. Once observation
data dj_ is given, The conditional pdf p(qk+1|k|ak+1) can be obtained by updating
cach Gaussian components with djy; and the bimodality can be preserved. The

details of updating process will be discussed in Sec. 2.2.5.

dk+1|k

di+1

~
r o

qk+1|k

Figure 2.3: EnLLVM captures higher order statistics.

2.2.4 OpTIONS OF LLVM

As is discussed in Sec. 2.2.3, p is the mean of samples for all possible latent spaces.
A particular latent model only depends on W and W. By restricting the structure of
W and W, the latent space can preserve certain property from original samples. To

set notation, we decompose Eq. (2.8) into two separate latent models as is shown in
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Eq. (2.32) and (2.33).

Qe = Wez+p,+m, (2.32)
divip = Waz+pg+1y (2.33)
z ~ N(,Iyxum)
n, ~ N(0,%,)

ng ~ N(quld)

Now we have two separate latent models for qzy1x and djyqx with a common
latent variable z. Parameters Wy, Wy, p,, p, m, and m, can be obtained by
comparing with Eq. (2.8). By doing this, we have made the assumption that the
noise 7, and 1, are uncorrelated. This is a restriction on the structure of noise n and
it is the case for commonly used linear latent models which we will discussed in this
paper. Fig. 2.4 gives an another interpretation of LLVM in our problem. Instead of
taking it as the projection from [qk+1|k, dk+1‘k] to z, we can view it from a generative
viewpoint in which a sample of qi11x is obtained by sampling latent variable z and
noise 7, then sampling the Gaussian representation conditioned on z and n. A sample
of dj4q, is obtained in a similar way. Note that qu4ix and djy1), share the same z.
This process is shown with red color. Here we introduce three commonly used linear

latent models.

Probabilistic Principal component analysis (PPCA) PCA is concerned with
finding orthogonal directions in lower dimensional space, on which the projections
have the largest variance. It is assumed that these projections in lower dimensional
space can reserve most information from the original data set, thus can be used for
dimensionality reduction and feature extraction. Probabilistic principal component
analysis (PPCA) is the probabilistic interpretation of PCA. It can be viewed as

a maximum likelihood solution of the probabilistic latent variable model given in
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Xk

h(Xk+1, Vi+1, 9)

Figure 2.4: Workflow of EnLLVM

Eq. (2.8). We have mentioned that by restricting the structure of the covariance
matrix W, we can obtain different latent apace. For PPCA, all off-diagonal values in

W are zero and values on the diagonal are the same.
blkdiag(®,, ¥,) = 0’Ipyp

As is discussed before, p is the mean of samples no matter what latent space is.
The other two parameters W and o2 can be also be obtained through maximum like-
lihood method. Tipping et al. [79] gave the exact closed-form solution. However, if
the dimensionality of the original space is high, which is one of the main focus of this
paper, an iterative expectation maximization (EM) procedure can be performed to
lower the computational cost. The EM algorithm can also be implemented incremen-
tally. Samples are processed in an incremental and asynchronous way, which can be
advantageous if both N and H are large. For the implementation of EM procedure,

one can refer to [5].
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Factor analysis Factor analysis is closely related to PPCA. The only difference in
the latent model is that the diagonal of ¥ can have different values, while for PPCA,

all the diagonal values are the same.
blkdiag(¥,, ¥,) = diag(o}...op)

Unlike PPCA, there is no closed-form maximum likelihood solution for W. However,

it can be done through EM method [5].

Probabilistic Canonical Correlation Analysis (PCCA) Given two random
vectors q and d, CCA is concerned with finding two directions on which the projec-
tions of q and d have maximum correlation. Assuming q has dimension H, and d
has dimension Hy, the total number of canonical correlations is min{H,, H;}. For
PCCA, parameters Wy, Wy, p,, py, m, and 1, can also be obtained by maximiz-
ing the likelihood function. Bach et al. [2] gives the closed-form solution as well as
EM algorithm. Note, unlike PPCA and factor analysis, n, and n, have off-diagonal

values.

2.2.5 BAYESIAN UPDATE OF ENLLVM

Once observation data dj.; is obtained, the latent variable z for each component of
the Gaussian mixture can be updated though Eq. (2.33). Then posterior p(Qr1jk+1)
can be estimated by sampling from the updated Gaussian mixture ﬁen(qkﬂ‘ k+1). The
Gaussian mixture is updated in following way. First, for each Gaussian component,
latent variable z; is updated though Eq. (2.33). This update is performed in the same

way as Gaussian component is initialized by each sample. The mean and covariance
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matrix of z; given dy. are as follows
Blz|dg 1] =Covlzi|di ) (W85 (disr — )

+ COV[Z‘quc+1\k7 d§c+1|k]_1E[Z‘quc+1\k7 d§f+1|k]) (2.34)

Covl(z;|dj1] :(COV[Z‘QZHW d§c+1|k]_1 + Wi W) (2.35)

where E[z|qj,,;, dj 1] and Covlz|aj,, dj, ;] are given in Eq. (2.13) and

Eq. (2.14) respectively. Second, the weight of each Gaussian component is calculated,
as ak+1 has different likelihood for each component. This update procedure shares
the idea as particle filter in which each particle is assigned with a weight according
to its likelihood. However, the likelihoods in EnLLVM and particle filter are different
in essence. In particle filter, the likelihood of observation data is calculated through
observation model that is Eq. (2.2). While in EnLLVM, the likelihood isn’t directly
related to the observation model. It is calculated through Eq. (2.33) which is a
latent model that we created. Thus EnLLVM can be applied to the data assimilation
problem in which typical likelihood is intractable. After z and weight are updated
for each Gaussian component, pe,, (Qx11jx+1) can be obtained as is shown in Eq. (2.36)

from which posterior samples can be generated.

N

Den(Qrsriper) = D wiN (p;, X5) (2.36)
i=1

pi = WeE[zi|dp] + g (2.37)

Y, = W,Covlz|dyp |W! + T, . (2.38)

One may notice that, since we already have Gaussian representation for each sam-
ple [ajyy. 1, dippy], given observation data dys1, p(qjq.,1) can be obtained directly
by conditioning in the original joint space. But here we perform the update through
latent model. This is due to the potential computational saving.

Lemma 2. Consider latent models shown in Eq. (2.32) and Eq. (2.33) with
z ~ N(p,,¥,). Direct conditioning in the original space and update through la-

tent models give equivalent posterior distribution p(qp1jk+1)-
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Proof. The joint distribution of qyjr41 and dyj4; is shown in Eq. (2.39).
(A1, dipys]” ~N(Wp, + p, WO, W' + )

where the mean and covariance matrix can be decomposed as follows

W, +
Wy, +p = | T (2.39)

Wdl'l’z + Hq

W, oW +¥, W, W

wWe Wi +w = | T R (2.40)
WO W W,B W 4w,

Given ElkH, the conditional distribution of qj41jx41 is also a Gaussian distribution of

which the mean and covariance matrix are given below

Elarijer1] =Wop, + 1,
+ WU W (WO W+ W) (e — Wap, + ) (241)
Covlautijert] =W, ¥ W] + ¥,

~ W, . W] (W, . W)+ ¥,)" "W, T W] . (2.42)

If we update qj41)x+1 through linear latent model, the mean and covariance matrix
of latent variable z are already given in Eq. (2.34) and Eq. (2.35). Since the goal here
is to show the equivalence with Eq. (2.41) and Eq. (2.41), we will use the other

representation given by Kalman filter, which is shown below

E[Z|ak+1] = .+ . W, (W, W] + ‘I’d)_l(akﬂ - Wap, + py) (2.43)

Coviz|di] = Ty — W (W0, WL 4+ 0,)" W)W, . (2.44)
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Then

Ela1+1] :WqE[Z|ak+1] + 1y (2.45)
:qu'l’z + l’l’q

+ W, O WI(W 8, W+ W) (dy — Wap, + ) (2.46)

Cov[dpt1jk+1] :WqCOV[Z\akH]WqT + Py (2.47)
=W, ¥. W/ + ¥,
~ W, . W] (W, . W)+ ¥,)" "W, T W] . (2.48)

As we can see, both ways give the equivalent update. However, conditioning in the
data space requires the inversion of H; by H; matrix which is inevitable As is discussed
before, if ¥, is a diagonal matrix, inversion of ¥4 in Eq. (2.34) and Eq. (2.35) only
costs O(Hy). Although an inversion of M by M matrix is added and can not be
avoided, the dimensionality of latent space is usually much less than the observation

space. Thus less computational cost is expected by updating through latent model.

2.2.6 NOISE INFLATION

After Bayesian update, each Gaussian component is assigned with a weight which is
calculated according to the corresponding likelihood. This may arise a degeneracy
problem, that is, the weight is concentrated on very few Gaussian components. In
this case, posterior samples are likely to be generated from the same component
many times, which will fail to describe the real posterior distribution. Once the
generated samples are propagated to the next time points and same operation is
performed, less and less diversity will be kept. Another issue is to deal with model
error. The existence of model error indicates that the observation data c~1k+1 may not
be generated from Eq. (2.1) and Eq. (2.2), which further leads to the possibility that
[&M, Qk+1)k+1) may be far away from the joint distribution p(q 1k, dgi1jx) described

by the current latent model.
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To avoid component degeneracy and accommodate for the model error, noise
inflation is performed. We introduce a new hyperparameter « in the distribution of

the noise n

Ny ~ N0, a®,) (2.49)

This hyperparameter is the key in performing data assimilation in the presence of
model error. Initially, after solving the LLVM, the Gaussian representation is suf-
ficient to capture the predictive samples. However, since our models always depart
from reality due to modeling approximations, there is a discrepancy between our
model predictions dj i and the actual measurements ak+1. The hyperparameter «
will be automatically tunned to accommodate for model discrepancy, it is determined
in the same way as getting the parameters of the LLVM. Namely, « is given by the

maximizing the likelihood function provided by Eq. (2.33).
a = arg maxN(ak+1; g, WoW2 + a®,)

There is a closed form solution to Eq. (2.33). To make it more general, let’s introduce
a lemma first.

Lemma 3. For fixed observation data d and mean g, the maximum value of
N(d; p, X) is achieved when ¥* = (d — p)(d — )7

Proof. The log likelihood is given in Eq. (2.50).

1

s k 1 s .
InN(d; p, 2) = —§log27r — §log|2| - §(d —pu)'S7Hd — p) (2.50)

where k is dimensionality of the Gaussian distribution. Take the derivative of

InN(d; g, X) with respect to X, we have

N (d;p, ) 1 (0In|3| N d(d— p)TZ(d — p) (2.51)
o 2\ 0% > ‘
SR ORI Rl TG RRE R (2.52)
Set Eq. (2.52) to 0, we obtain ¥* that maximize the log likelihood.
5 = (d - p)(d - )" (2.53)
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In our case, the covariance matrix is WyW71 + aW¥,, thus ax can be obtained by

solving the following equation:

T = wiw )t (2.54)

U7 = (derr — pa)(dipr — pa)” — WaWJ (2.55)

Usually, the exact solution of Eq. (2.54) does not exist, as U5 ¥, ! may have nonzero
off-diagonal values and different diagonal values. However, we can always find ap-
proximate solution by minimizing the Frobenius norm difference between a*I;. and

UEW ! which leads to the following solution:
* 1 Ewr—1

If a* > 1, the noise in Eq. (2.33) will be inflated, which will lead to larger un-
certainty in the latent variable. This uncertainty will eventually be reflected in the
uncertainty of Qols through Eq. (2.32). This means the model error will be ab-
sorbed in the uncertainty of Qols, which provides a way to investigate model error

and develop models.

2.3 NUMERICAL EXPERIMENTS

In this section, the predictability of EnLLVM will be assessed by working on two
chaotic systems. The first example will show the capability of capturing bimodal
distribution. In the second example, EnLLVM and EnKF will be applied to a high
dimensional system, and their performance will be compared on several different

scenarios.
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2.3.1 EXAMPLE 1 - LORENZ 63

The Lorenz 63 is a three dimensional system and was used to study multimodality in

78, 27].
dx
d_tl = —CI1 + CcT2 (257)
dx
d—tz = —21T3 +1rT1 — Yo (258)
dx
_dt3 = T1T2 — bl’g (259)

Here c =10, b = % and r = 28. The discrete measurement model is given in Eq. (2.60)

di = \Jo1(t)? + 2a(te)? + 3(t)? + vk v ~ N(0,1) (2.60)
The initial state pdf is set to
p(z(t)) ~ 0.5N([-0.2, 0.2, 8]", v/0.35I3) + 0.5N([0.2,0.2, 8]", v/0.3513)

The total simulation time is 4 and the system is discretized with a time step At = 0.1.
The measurement is generated by randomly selected initial states from Eq. (2.61) and
propagated through Eq. (2.60). States are updated every 4 time steps.

The joint space of states and observation have a dimensionality of four, and in this
simulation, we use two components for PPCA and 30 samples for Bayesian update.
Fig. 2.5 shows the posterior distribution of states after each update. The horizontal
lines indicate the truth. As we can see, EnPPCA is doing well in capturing the truth.

Besides, it can also capture the bimodality of the states.

2.3.2 EXAMPLE 2 - LORENZ 96

In this example, EnPPCA and EnKF will be applied to track the states of Lorenz
96. Lorenz 96 is a 40 dimensional nonlinear system and commonly used for studying

data assimilation. The system is given in Eq. (2.61).

d(t)
dt

= (xj41 —xj_9)rj_1 —x; +8, forj=1...40, (2.61)
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Figure 2.5: Posterior distribution of states in Lorenz 63 system after each update.

where x¢g = 149, 2_1 = Z39, and x4; = x1. The system is discretized with a time step
of At = 0.001. The prior is given by N (0,1) and the observation model provides
an incomplete observation of the state of the system at every At = 0.1. EnKF and
EnPPCA will be compared in different scenarios. Besides the linear measurement
model, two different nonlinear measurement models are also used. Another important
scenario is the presence of model error. As is discussed earlier, EnPPCA has the
property to absorb potential model error, and reflects it in the posterior distribution
of Qol. Here, four different models are used to generate samples and they only differ

in the constant term.
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Data generation process:

M1 : dxé—t(t) = (I‘j+1 — I'j_2>$j_1 — Ty +9

M2 B = (g — 2y )m — 2+ 10

M3: B = (24 — 2 )u g —ay+ 1

M4 8 = (2500 = 2j0)7jo0 — @ + 12

True model:

0 — (211 — 2 0)w 1 — 2 +8
Measurement models:

dj(t) = o1 (t) +v;(t), v;(t) ~N(0, L)

Nonlinear measurement model:

(1) : dj(t) = waj-1(t)a;(t) +v5(t), v;(t) ~ N(0, I20)

(I1) = dj(t) = w251 (t)* +v(t),  v;(t) ~ N(0, Io)

The joint space between the Qols (states of the system) and the observable has
dimensionality of 60. For this study, 5 components are used for EnPPCA, which
means the dimensionality of the latent space is 5. Here, we use 30 samples to track
the states of the system. Root mean square error (RMSE) is used as the metric to
measure the predictability of EnPPCA and EnKF. RMSE is calculated between the
mean of posterior samples and the true state value.

Table. 2.1 shows the RMSE statistics of 100 trials. As we can see, if no model
error exists, the performance of EnKF is comparable with or better than EnPPCA in
average RMSE for all three measurement models. However, if we look at predictive
distribution given by EnKF, which is shown in Fig. 2.6,the 95% credible interval of
posterior samples often fails to capture the true state. This is due to the limited

number of samples which underestimate the covariance matrix of the states. Fig. 2.7
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Table 2.1: EnKF vs EnPPCA: RMSE statistics of 100 trials

EnKF EnPPCA
Mean STD Mean STD

Linear Measurement Model

Model Error

No err. 2.71 0.61 292 0.23
M1: 9 3.71 0.63 2.99 0.23
M2: 10 4.63 0.71  3.07 0.22
M3: 11 5.31 0.81 3.18 0.21
M4: 12 5.9 0.84 3.27 0.20
Nonlinear Measurement Model (I)

No err. 1.87 0.53 2.85 0.26
M1: 9 3.3 0.63 291 0.22
M2: 10 4.37 0.47  3.02 0.21
M3: 11 5.01 0.44  3.17 0.17
M4: 12 5.51 0.49 3.32 0.17
Nonlinear Measurement Model (II)

No err. 2.87 0.76  2.84 0.24
M1: 9 3.78 0.7 2.94 0.22
M2: 10 4.78 0.56 3.03 0.20
M3: 11 5.43 0.53 3.16 0.19
M4: 12 6.1 0.55 3.37 0.17

shows predictive trajectories provided by EnPPCA. As we can see, the truth nearly
always fall in the 95% credible interval. Once model error is introduced, the RMSE
increases for both EnKF and EnPPCA. However, EnPPCA has a smaller average
RMSE than EnKF. And RMSE of EnKF increases significantly with the increasing
model error, since there is no procedure to deal with model error. Fig. 2.8, Fig. 2.9
show the predictive trajectories of EnKF and EnPPCA when model M4 is used to
generate samples. In this case, the model error is large and we can see that, 95%
credible interval provided by EnKF can hardly capture the true state value. While

for EnPPCA, it is still able to capture the truth.

2.4 SUMMARY

In this paper, a novel data assimilation method EnLLVM is proposed. EnLLVM is

an ensemble method which is based on linear latent variable models. In EnLLVM,
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Figure 2.6: Results of data assimilation by EnFK: tracking the state of a 40 di-
mensional Lorenz system using only 30 samples and sparse incomplete observation

model.
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Figure 2.7: Results of data assimilation by PPCA: tracking the state of a 40 di-
mensional Lorenz system using only 30 samples and sparse incomplete observation

model.
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sional Lorenz system using only 30 samples and sparse incomplete linear observation

model with model error M4.
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the joint distribution of Qols and observation is approximated by a Gaussian mixture
which is constructed by projecting each sample into the latent space. Then Bayesian
update of Qols is performed by first updating the latent variable of each Gaussian
component and then map it to the original space. By choosing proper linear latent
models, e.g., PPCA or FA, one can avoid inverting big matrix in original space.
Instead, only inversion of matrix which has the same dimensionality as the latent
space is required. This can be a big saving in computations as the dimensionality
of the latent space is supposed to be much lower than that of the original space.
EnLLVM only requires a small number of samples.

Compared with EnKF, it doesn’t require Gaussian distribution assumption and is
able to capture multimodality. Since Bayesian update is performed in the latent space
without calculating likelihood through observation model, EnLLVM can be applied
to data assimilation problems where likelihood function is intractable.

However, EnLLVM is still an approximate method. Although linear latent model
facilitates mapping between original space and latent space, the Gaussian presentation
it provides is too simple to give an exact description of the probability distribution,
even if ensemble method is used. Since samples are projected a much lower latent
space, the loss of information is unavoidable.

Since EnLLVM is a general framework without specifying the latent model, We
can try different latent models which preserve different kinds of properties from the
origin samples. In this paper, the performance of EnPPCA is assessed by applying to
two nonlinear dynamic systems Lorenz63 and Lorenz96. The first example shows the
capability of EnPPCA to capture bimodal distribution. In the second example, we
compared EnPPCA with EnKF on the same system in a bunch of different scenarios
including different nonlinear observation models and different model error. Results

show that EnPPCA gives consistent better performance.
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CHAPTER 3
APPROXIMATE COMPUTATIONAL APPROACHES FOR

BAYESIAN SENSOR PLACEMENT IN HIGH DIMENSIONS

3.1 INTRODUCTION

Sensor placement plays an important role in a range of engineering problems, such as
grid coverage [25], tracking target [16, 85], and monitoring spatial phenomena [61].
These problems may range across various subjects, however, many of them are similar
in essence. In this paper, we restrict ourselves to the problem where quantities of
interest (Qols) need to be inferred given sensor measurements. One example in this
category is monitoring atmosphere dispersion event. In a chemical release accident,
it is desirable to know the release parameters such as location, strength and time, so
as to aid emergency response. These release parameters are Qols and can be inferred
from sensor measurements. Other Qols include concentration of chemicals which can
be inferred in unobserved regions.

These sensor placement problems always involve mathematical models which de-
scribe the spatial and/or temporal process in concern. Usually, Qols are unknown
model parameters and/or state variables. The inference involves running computer
simulations and solving inverse and forward problems. Generally, there are two cate-
gories of approaches, optimization methods and Bayesian inference. The optimization
methods provide a single point estimate of unknown parameters by minimizing the
discrepancy between model predictions and observational data. While Bayesian in-

ference formulate the problem in a Bayesian framework where quantities have proba-
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bilistic description and posterior distribution of unknown parameters can be obtained
via Bayes rule. The advantage of Bayesian inference is the incorporation of prior in-
formation and the access to the full posterior distribution from which estimates with
quantified uncertainties can be extracted. Usually in Bayesian inference, Monte Carlo
sampling are employed and inference problems are solved by Markov Chain Monte
Carlo, particle filter or Ensemble Kalman filter for computation preference. For a
thorough review of both optimization methods and Bayesian inference, one can refer
to [42]. In this paper, we focus on Bayesian inference.

Once we have measurement data, Qol can be inferred. However, data collected
from different locations may provide different amount of information towards Qol.
Moreover, it is usually impractical to place sensors exhaustively due to high cost of
installing and maintaining sensors. Thus sensors should be placed judiciously so as
to maximize the information content. Sensor locations are commonly decided by run-
ning simulation and maximizing certain criterion. There are various choices towards
the criterion. It can be Mean Square Error (MSE), mutual information, entropy or
measurements about inverse moment matrix in A-; D-, E-optimal design. Among all
these criteria, mutual information is most common used, since it is a natural measure
of dependence between the two variables and others can be derived from it either
directly or indirectly. Ertin (2003) [31] discussed maximum mutual information ap-
proach for dynamic sensor query problems. In his paper, mutual information between
sensor data and target state was maximized at each step to decide which sensor was
queried for tracking the target. And it was shown that this maximum mutual informa-
tion approach was equivalent to minimizing expected posterior uncertainty in target
state. This holds in the special case when the conditional distribution of the observ-
able given the state is independent of the state as in the fixed additive Gaussian noise
case. Andreas Krause (2008) [55] discussed sensor placements for prediction problems

where mutual information between the observed locations and unobserved locations
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is maximized so as to gain most information about observed locations. Xiaopei Wu
(2012) [87] tackled a similar problem in soil moisture. Instead of applying maximum
mutual information strategy globally, locations were first clustered according to soil
moisture content, and then maximum mutual information was used in each cluster
to select sensor locations.

Although mutual information is a perfect criterion theoretically, estimating mu-
tual information is challenging. Some commonly used estimators include histogram
based estimator, kernel density estimator, and k-nearest neighbor estimator (kNN).
In their survey, Walters-Williams and Li [83] show that parametric estimation usu-
ally outperform non-parametric estimation when data is drawn from a known family
of distributions. But this is not the case in most practical problems. Usually mu-
tual information is estimated directly from Monte Carlo samples. Khan et al. [51]
compare different estimators and show that the kNN estimator of mutual informa-
tion captures better the nonlinear dependence than other commonly used estimators.
The kNN estimator of mutual information, proposed by Kraskov et al. [54], is based
on kNN estimator of entropy [53]. It is shown that by using matching distances in
joint space and marginal spaces, the biases in entropy estimators could be canceled
to some extent thus it is able to give a overall better performance.

However, a good estimation requires large sample size in small dimensions which
is not always the case in real world applications. This issue is not directly addressed
in the past literature. On many occasions, mutual information is adopted as a metric
only for comparison purpose. For example, in sensor placement mutual information
between Qols and different locations are compared and there’s no need to know
the exact value of mutual information as long as the correct comparison results are
provided. Thus, we can use alternatives that have consistent performance in such
comparisons. In this paper, we propose a lower bound of mutual information that

could be used as an alternative for comparisons purpose. The lower bound can be
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computed in much lower dimensions than original space. We compare it with kNN
estimator in full dimensions on both simulated and real data. The results demonstrate
the consistent performance of the proposed lower bound.

Furthermore, Bayesian optimization [44] is introduced to facilitate maximizing
the criterion over a continuous domain. This strategy has been used for experimental
design in [86]. Bayesian optimization is much more efficient than the typical way
which discretizes the domain into fine grid and make selection from all the grid
points. Finally, a chemical release accident is simulated where sensors are placed to
infer the release location. Mutual information is used as the criterion to place sensors.
However, instead of comparing mutual information directly, we compare the proposed
lower bound. And this criterion is maximized though Bayesian optimization. The
proposed approach shows promising results.

The rest of the paper is organized as follows. In section 2, uncertainty modeling
and Bayesian inference is introduced. The proposed sensor placement strategy is
detailed in section 3. In section 4, a chemical release accident is simulated and the
proposed approach is applied to infer release parameters. Conclusion is given in

Section 5.

3.2 BAYESIAN INFERENCE

In this section, we introduce Bayesian inference for solving inverse problem. In the
Bayesian framework, uncertainties in state variables and parameters are usually de-
scribed with probability distributions. Measurement data is used to update the knowl-
edge of these quantities. It is desirable for the posterior distribution to have a small
uncertainty and at the same time to capture the true value. The connection be-
tween these quantities and observation data is embedded in the mathematical model
which describes the process in concern. Since the proposed approach in this paper is

universal, an abstract model will be introduced first.
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3.2.1 UNCERTAINTY MODELING

To set notation, consider the following abstract model:

R(u,0,z) =0 (3.1)
y=Y(u,0,x) (3.2)
q=Qu,0,z) . (3.3)

Here, R is some operator, u is the solution or the state variable and 6 is a set of
parameters, which usually have a physical interpretation. z denotes the scenario
which defines the problem being considered. In sensor placement, z usually refers
to sensor locations. ) is a map from the solution to the prediction quantity y that
can be compared with sensor measurements D. In addition, @ defines Qol which is
denoted by ¢. In our problem, ¢ can be 6 or u or other quantities inferred from 6
and u. However, no matter what ¢ is, model parameters and state variables need to
be known first. Then other quantities can be obtained through Eq. (3.3). Usually,
and u are unknown or partially unknown, and need to be inferred from data. Let 7
denotes unknown parts of # and u. In this paper, Bayesian inference is carried out
to solve the problem.

Because the observation data is noisy due to sensor imprecision, the measurement
noise € usually follows a known pdf p(e) that is defined by the specifications of the
sensors. This results in the following relation between the observable d and model
prediction y.

d=y+e. (3.4)

Finally, the relation between the observable d and model parameters 6 as well as
state variable u is given by combining Eq. (4.2) and Eq. (4.5). This measurement
model, Eq. (4.6) defines the likelihood function and Bayes rule can be used to update
the knowledge of 7.

d=Y(u,0,x)+¢€. (3.5)
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Since Bayes rule is used as the inference engine, then a prior probability distri-
bution needs to be defined for 7, that is, 7 ~ p(7). Note that the additive errors
introduced in the previous equations are not a requirement; multiplicative errors or

embedded errors are possible as well.

3.2.2 BAYESIAN INFERENCE

This paper employs probability to represent uncertainty and Bayesian inference to up-
date the uncertainty of unknown quantity 7 in light of observation data. In Bayesian
inference, one seeks a complete probabilistic description of 7 that make the model
consistent with the observation data, D. The solution to this problem is the posterior

probability density function of 7 and it is defined by BayesaAAZ Theorem,

p(D[7)p(7)
p(D)

Here, p(D|7) is the likelihood function and it measures the agreement between

p(r|D) = (3.6)

the model output and the data for given values of the input 7. The denominator
in Eq. (4.14) is called the marginal likelihood or evidence. Overall, this is just a
normalization constant that ensures that the solution to the Bayes’ inverse problem,
p(7|D) is indeed a proper pdf that integrates to one.

In a more general scenario, data is collected over a period of time, and the knowl-
edge of 7 is updated after each measurement. Let D = {d;, dy, ..., dy; } denote the mea-
surement data collected at M time points. The final posterior distribution p(7|Dyy)

can be obtained recursively as shown in Eq. 3.7

p(Dum|7)p(7)
p(T‘DM> = p(DM)
_ p(dar, Dy—1|7)p(T)
p(dar, Dy—1)
_ p(dar|Das—1, 7)p(Dar—1|7)p(7)
p(dar|Dar—1)P(Dar—1)
_ p(dar|Dar—1, 7)p(7|Das 1)
p(dam|Dar-1)
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As we can see, in the inference above, the posterior distribution obtained at cur-
rent time will be the prior for the next time point. Note, the true value of model
parameters remains unchanged, while other quantities like states usually change with
time. Another thing worth mentioning is that during the observation time period,
sensors can either remain fixed or be mobile. This raises two categories of sensor
placement problems, static sensors and mobile sensors. If mobile sensors are used,
sensor locations need to be selected at each time point given the current status of
the system. In this case, the above observation data d; are collected from different
locations.

A vast number of computational approaches have been invented to solve Eq. 4.14.
For linear models with Gaussian distribution and additive white noise, Kalman filter
is the most accurate and efficient method to solve the inverse problem. However, this
is not the case on most occasions, where models can be nonlinear and the distribu-
tion of states and/or parameters are non Gaussian. Then we need to use numerical
sampling techniques, also known as Monte Carlo. Most commonly used methods in-
clude particle filter and Markov Chain Monte Carlo (MCMC) [50]. In particle filter,
samples’ weights are updated by calculating likelihood at each sample. For better
estimation, more advanced procedures might be added, such as regularization and
progressive correction [65]. On the other hand, MCMC has become a main compu-
tational workhorse in scientific computing from a large class of distributions. The
most basic form of MCMC is Metropolis-Hasting (MH) algorithm [62, 4], which gen-
erates a sequence of correlated samples that form a Markov chain. Improved versions
of MCMC such as delayed rejection adaptive metropolis (DRAM) and transitional
MCMC (TMCMC) [38, 4, 17] are also used. Another important method is ensemble
Kalman filter (EnKF). EnKF was first introduced by Evensen [32] and has been widely
used in various applications due to its simplicity in both theory and implementation.

It originates from Kalman filter but uses Monte Carlo approach to represent proba-
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bility distributions. In EnKF, samples are called ensemble members. Each ensemble
member is updated through similar formula as in Kalman filter. EnKF propagates
a relatively small ensemble of samples through the system non-linearities and moves
them such that their mean and covariance approximate the first two moments of the
posterior distribution.

As we can see, once observation data are collected, various methods can be per-
formed to implement Bayesian inference. However, sensors placed at different loca-
tions might provide different amount of information about 7. More specifically, the
posterior distribution p(7|D) in Eq. 4.14 is more likely to be different given differ-
ent D. Some might have a larger uncertainty, while others have more accurate and
confident estimation. Thus placing sensors judiciously is important and this will be

detailed in the following section.

3.3 SENSOR PLACEMENT

The placing of sensors to infer the Qols is formulated in Bayesian framework where
each Qol has a probabilistic description. Here, we use ¢ to denote all the Qol which
might include model parameters, state variables or other quantities. Suppose we
have prior information p(7), when observation data d is collected, posterior p(7|d)
can be estimated via Bayes’ rule which has been discussed in the previous section.
Usually, the uncertainty of 7 will be reduced after Bayesian inference. Meanwhile,
any uncertainty of 7 will be propagated to ¢ through Eq. (3.3) and it is desirable for
¢ to have small uncertainty. However, data collected at different locations will lead
to different posterior distribution p(q) which sometimes can be too wide to provide
useful information. Thus sensors should be placed strategically. Here, we develop an
approach which selects the most informative sensor locations. The approach is based

on mutual information criterion which will be discussed first.
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3.3.1 MuTtUuAL INFORMATION CRITERION

Mutual information criterion was first introduced by Lindley [59] who used this cri-
terion to measure the expected amount of information provided about the unknown
parameters ¢ by the measurement data d in an experiment. In this criterion, the in-
formation obtained from an experiment is quantified by the reduction in uncertainty
of # which is represented by Shannon entropy. Thus different experimental conditions
can be compared and the one that leads to the most reduction in uncertainty of
will be selected to perform the experiment.

Sensor placement shares the same idea. We use = to denote sensor locations, the

amount of information provided by observing d at x will be

U(d,x) =H(q) — H(ql|d, ) (3.8)

_ / ¢) log p(q)dq + / (qld, z) log p(q|d, z)dq (3.9)

where H(q) is the entropy of prior distribution p(q) and H(q|d,x) represents the
entropy of posterior distribution p(g|d, x). The reduction in entropy quantifies how
much information is gained by observing d at z. Since observation data can only be
obtained after sensors are placed, the expected amount of information is calculated

by marginalizing over all possible observations:

E,[U(d, z)] = /D U(d, 2)p(d|z)dd . (3.10)

Eq. (3.10) can be expanded as follows:

/ / p(d|z)log p(q)dgdd

+ /D /Q plald, z)p(d|x)log p(q|d, x)dgdd . (3.11)

In the first term on the right side of Eq. (3.11), d only appears in p(d|z), so p(d|z)

can be integrated as 1 without affecting the result. Also ¢ and z are independent.
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Then we have

| p@p(dla)d =pla) (3.12)
_ /Dp(q, d|z)d . (3.13)

The first term of Eq. (3.11) becomes — [5, [o p(q, d|z)log p(q)dgdd. Thus

// gld, 2)p(d|z) log (q|d’x‘)p(d‘x>dqdd

p(d|r)
= [ | pla. di)og pla)dgad (3.14)
_ plq, d|x)
—/D/Qp(q,d|x)log o(dir) dgdd
= [, pla. dl) g pla)dgad (3.15)
p(q, d|z)
_// (¢, d|z) log ()(|)ddd
=I(q;d|x) . (3.16)

We can see that the expected amount of information of ¢ provided by sensors equals
mutual information between ¢ and sensor readings d. Therefore sensors should be

placed where this mutual information is maximized. This is shown in Eq.(3.17)
¢" = argmax I(d; q|x) (3.17)

In our paper, we adopt the kNN estimator of mutual information proposed by Kraskov

et al. [54]. There are two kNN estimators:

Bfad) = 5 3 (00 + 1)+ 0 + 1)+ 0l0) £ 0N) (319
(g d) & — 5 3 (000 + ¥(na(0))) (k) + 6(N) — 7 (319)

1

<.
Il

Here, N represents the total number of samples and (k) is the digamma function.
Let [(i) denote the distance from the ith sample [q(7), d(4)] to its kth nearest neigh-

bor in the joint space, [,(7) and [4(i) denote the distances between the same points
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projected into the ¢ and d subspaces. For Eq. (3.18), n4(7) and n,(i) are the number
of samples in the subspaces within the distance (7). For Eq. (3.19), nq(i) and n,(7)
are the number of samples in the subspaces within the projected distances [ (i) and
la(7) respectively. Eq. (3.19) is expected to work better than of Eq. (3.18) in high di-
mensions. Both estimators are approximate. They are derived under the assumption
that density is constant in small (hyper)cubes or (hyper)rectangles centered at each
point with size specified by its distance to the kth nearest neighbor. So a small value
of k will result in small system error but a large statistic error and vice-versa. It is
recommended to use k =2 ~ 4 [54].

Experiments in [54] show that the kNN estimator tends to underestimate mutual
information when the N is not large and the proportion of the estimator on the true
value scales as 1/ V/N. Also the statistical errors scale roughly as m/ VN for large
dimension m. For m = 6 and N = 50000, kNN estimator starts to depart from
the true value in some experiments. Thus in much higher dimensions, an enormous
number of samples are required, which can be computationally too expensive, and

impractical for cases when only a limited number of samples are available.

3.3.2 SENSOR PLACEMENT APPROACH

The main focus of this paper is to solve the problem of computing mutual information
in high dimensions. Since it is usually impractical to get good enough samples in high
dimensions, the kNN estimator becomes unreliable. To solve this problem, in this
section we develop a novel approach which computes the lower bound of I(d;q) in
much lower dimensions. Also, in order to lower the computational cost, Bayesian
optimization [44, 86] is introduced to generate a mutual information surface which

greatly reduces the number of evaluations.
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DATA PROCESSING INEQUALITY

The derivation of lower bound is based on data processing inequality which is stated

below [19].

Theorem 1. If random variables J, V', Z form a Markov chain in the order denoted

by J =V = Z, then I(J;V) > I(J; Z).

J, V', Z form a Markov chain means the conditional distribution of Z depends only
on V and is conditionally independent of .J, that is p(Z|V') = p(Z|J, V). A special case
of Theorem 1 is that if Z = ¢g(V'), then I(J; V) > I(J; Z) which means no function
g(e) can increase the amount of information that V' tells about J. We extend this

idea by applying transformations on both .JJ and V', which leads to Corollary 1.

Corollary 1. For random variables J, V., Z and U, if J -V — Z and U = h(J),
then I(J;V) > I(U; Z) .

Proof. J — V — Z implies Z — V — J which further implies Z — J — h(J).
Thus I(J;V) > I(J;Z) > I(U;Z). In particular, if Z = ¢(V), then I(J;V) >
I(h(J),g(V)). O

In our case, for any transformation g(e) on d, and h(e) on ¢ we have h(q) <> ¢ <>

d <> g(d) which leads to

I(q;d) > 1(g;9(d)) = I(h(q); 9(d)) . (3.20)

Thus, the problem is converted to looking for two proper transformations g(e) on d
and h(e) on ¢. Since we want mutual information to be computed in lower dimension,
the most favorable transformations are the ones that convert ¢ and d to two one
dimensional variables, at the same time keep the dependency between ¢ and d. One
such transformation is canonical correlation analysis (CCA) which will be discussed

in the following section.
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CANONICAL CORRELATION ANALYSIS

Given two random vectors J and V', canonical correlation analysis is concerned with
finding two directions on which the projections of J and V' have maximum correla-
tion. Assuming .J has dimension p; and V has dimension p,, there are p canonical
correlations of J and V| where p = min{p;, po}. These p canonical correlations can
be obtained by solving a generalized eigenvalue problem [3]. The solution will provide
all p correlations which are ranked in decreasing order. Here, we only consider the
first canonical correlation, that is the largest one among all the correlations, and use
it to derive the lower bound of mutual information.

Let o and 3 denote two projecting directions, the first canonical correlation p; is

defined as the maximum possible correlation between two projections a’.J and B7V:

p1 = max corr(a’J, BTV . (3.21)

)

Here o' J and 87V are both one dimensional random variables. Recall that our goal
is to find two transformations h(e) and g(e) such that I(h(.J); g(V')) can be computed
in lower dimension. Thus we can choose h(.J) = ol J and g(V) = 8TV where o and
[ are projecting directions of the first canonical correlation.

[3] discussed relation between CCA and mutual information. It is shown that if
the joint distribution of J and V' is Gaussian, the mutual information between J and

V' can be expressed as a function of canonical correlations p;, 1 = 1,2, ..., p.

I(J,V) ———Zlog 1—p2). (3.22)
We can further denote I(alJ, V) as the mutual information between the ith canon-

ical projections. Then
p

=> I(a] J.5]V) (3.23)

=1
which means if p = 1, the mutual information of Gaussian variable J and V is

equivalent to the mutual information of their first canonical projections, that is

I(J,V)=1(alJ,BLV) . (3.24)
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In our case, h(e) and g(e) in Eq. (3.20) are selected to be the first canonical projec-
tions. In particular, if ¢ contains only one quantity, then h(q) = ¢q. Further more, if
the joint distribution of ¢ and d is Gaussian, then the equality will hold. As we can
see, the mutual information between the first canonical projections is a lower bound
of the original mutual information criterion. And we will use this lower bound as the

criterion in the our sensor placement.

BAYESIAN OPTIMIZATION

By projecting the observable and Qol onto a lower dimensional space, the computa-
tion of mutual information becomes more reliable. However, to select the location
with maximum mutual information over a continuous domain is still challenging, since
mutual information is usually computed through Monte Carlo method and doesn’t
have a close form. A common way to solve this problem is to discretize the domain
into grid then compare mutual information at each grid point. The drawback of this
method is obvious. On one hand, if the grid is too fine, it will require vast compu-
tations which is not efficient. On the other hand, sparse grid may fail to capture the
optimal point. In this paper, we apply Bayesian optimization [44] to facilitate the
selection of sensor locations.

The basic idea of Bayesian optimization is to evaluate objective function f(x)
(which is mutual information in our case) at a small number of points where f(z)
is most likely to reach the maximum. Two concepts are needed to address, one
is probabilistic prior on objective function f(x), the other is acquisition function
a(x). Acquisition function takes in probabilistic distribution of f(z) as argument and

decides the point x at which the objective function f(z) should be evaluated.

f(@) = I(q; d|x) (3.25)
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Gaussian process Like prior on variables, we use p(f(x)) to denote the prior
distribution of f(x). After calculating the estimates of the mutual information at
various scenarios, Dy = {(z;, f;)|i = 1,2, ..., t}, the posterior distribution of f(z) can

be obtained through Bayes’ rule

(De] f (@))p(f ()
p(Dy) .

The most common prior is Gaussian process which is denoted as

p(f(x)|Dy) =L (3.26)

f(x) ~ GP(m(z), k(z,2)) .

Here, m(z) is the mean function and k(z, ') is the covariance function. A Gaussian
prior on f(z) means that f(x) at different points x follows a multivariate Gaussian
distribution whose mean is m(z) and covariance matrix is specified by k(z, ).

f(x1) m(xy)| |k(xy,21) - k(xy,2p)

~N : )

f(zn) m(z,)| kT, z1) -+ k(xn, x,)

Covariance function k(x,2") defines the correlation between two different points

/ . . . . .
and x . A commonly used covariance function is squared exponential function,

!

k(z,z') = exp(—(z — 2 )TA Yz — 2)) (3.27)

where A is a diagonal matrix of which each entry A on the diagonal specifies the
correlation length of two points in the corresponding dimension. A large A\ means
f(z) is smooth in that dimension. Usually, A is obtained through maximum likelihood
estimation.

Now let F; denote observed outputs over X; = [z, 9, ..., 4], F,, denote outputs
over any X, = [T¢41, Tig2, ..., Tn), My and M, denote mean vectors
(m(z1), m(xs)...,m(x;)] and [m(xiyq1), m(xey2)...,m(x,)] respectively. According to
the Gaussian prior, we have

Bl K(X., X)) K(X.,X,)
F, M,| |K(X,, X)) K(X. X,)
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K (X3, X,,) is a covariance matrix of which the element at (i, j) is specified by k(z;, ;).

From this joint Gaussian distribution, we can obtain the conditional distribution of

F,, given F;
P(Fn|F2) ~ N (u(Xn), 2(X,)) (3.28)
where
p(Xn) =M, + K (Xp, X)) K (X, X;) 71 (F, — M,) (3.29)
N(X,) =K(X,, X,) — K(X,,, X)) K(X, X;) 'K (X, X,) . (3.30)

The derivation of Eq. (3.29) and Eq. (3.30) is based on the fact
p(Fn, Fy) = p(F,.|Fy)p(F;). Also since if two sets of variables are joined Gaussian dis-
tribution then the conditional distribution of one set given the other is also Gaussian,

we only need to work on the exponential terms of Gaussian densities. Thus we have

-1
1( Fy M, )T K(Xy, Xy) K(Xi,X,) ( F, M, )
20E| M| KX X)) KX X! |E| | M,

__ %(Ft — M)TK(X,, X)) (F, — M,)
_ ;(Fn — (X)) TS X (B — (X)) - (3.31)

By comparing the related terms in Eq. (3.31), we can obtain u(X,) and X(X,).
This also involves using partitioned matrix and the Schur complement to get inverse
matrices. For details, one can refer to [5]. So we can get estimation of mean pu(f(x))
and variance o?(f(z)) for each z. Thus a surface of f(x) with uncertainty o?(f(z))
is generated. Each time after evaluating f(x) at some z, the surface will be updated

according to Eq. (3.29) and Eq. (3.30).

Acquisition function In the last section, we have discussed Gaussian process prior
over objective function f(x) and how to update distribution of f(z) given evaluation

at x. But where to collect real data D remains unsolved, since we want to place
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the sensor where the maximum f(z) is achieved. Here, acquisition function a(z) will
guide the searching process.

Acquisition function takes the mean u(f(z)) and the variance o?(f(z)) as two
arguments, and has a property that large value of a(x) is associated with potentially
large value of f(z). Thus we only need to evaluate f(z) at the point where a(x)
reaches maximum. And a(z) is usually much easier to evaluate.

One of the most popular acquisition function is expected improvement [11]. Let
f(z) denote the current maximum value of objective function. The improvement of

the new evaluation will be

§(x) = max{0, f(z1) — f(xh)} . (3.32)

Since f(x41) follows normal distribution with mean u(f(x)) and variance o(f(x))

which can be obtained from Gaussian process, the expected improvement will be

P = [ 5] - (_(u(z) (5 + f<x+>>>2> 5

=0 oo 20%(z)
= () e ()] e

Here ® and ¢ represent cumulative density function and probability density function
of the standard normal distribution respectively. As we can see the acquisition func-
tion achieves a trade-off between large values of f(z) and large uncertainty in f(x).

Maximizing FI(x) will give the next point to evaluate f(x).

PLACEMENT OF MULTIPLE SENSORS

Bayesian optimization is powerful in looking for one single sensor location. However,
in most cases, it is necessary to place multiple sensors so as to get enough infor-
mation about Qol. Selecting multiple sensor locations is more complicated. When
using sparse grids, the number of combinations of sensor locations where mutual in-

formation needs to be evaluated becomes prohibited computationally. Here, we adopt
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a greedy approach that leverages the previously introduced lower bound. Suppose
N sensors need to be placed. When we place the first sensor, the lower bound of
I(dy(z); q) is maximized through Bayesian optimization and the point x with max-
imum mutual information is selected as the first sensor’s location. For the second
sensor, the lower bound of I(dy,ds(x);q) is maximized. This time d; is associated
with the first sensor location which is fixed. The other sensors’ locations are selected
in the same way, maximizing the lower bound of I(d;,ds, ..., d;(z);q), until i = N.
Here, we use I(h;(q), g;(df(x))) to denote the lower bound and d (x) = [dy, ds..., d;(z)].

The whole process of sensor placement is shown in Algorithm. 1.

Algorithm 1 Sensor placement with Bayesian optimization
1: for:=1,2,...,N do
2: Evaluate I(h;(q),g:(d;(z))) at initial points X;,;; = {xx|k = 1,2,..., K}.

3: Update Gaussian process on 1(h;(q),g:(d(x))) with Eje = {(Ix, zx)|k =
1,2,...K)}.

4: for j=1,2,.... M do

5: Select next point x4 by maximizing acquisition function a(z) associated
with Gaussian process on I(h;(q), g:(df(z)))

6: Evaluate I(h;(q), g:(df(x))) at xpy1.

7 Update Gaussian process on I(h;(q), g;(d}(x))) with (g1, Tr41)-

8: end for

9: Select the point x with maximum value among M + K evaluations as the ith
sensor’s location.

10: end for

Note that sensor locations are selected greedily by running simulations without
any real data. Once observation data are collected, sensors can either stay still or
move around. If mobile sensors are used, Algorithm. 1 need to be conducted after

each Bayesian update.

3.4 EXPERIMENTS

In this section, we will conduct several experiments to assess the performance of

the proposed methodology. In the first part, lower bound of mutual information is
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compared with calculating mutual information directly. The idea behind this is that
if a variable is more dependent on one variable than another, the mutual information
and its lower bound should reflect the same trend. In the second part, a chemical
release accident is simulated and sensors are placed to infer the release location.
Sensor placement will be done by comparing lower bound of mutual information.

And Bayesian optimization will be applied to facilitate the computation.

3.4.1 CONSISTENCY OF LOWER BOUND

SIMULATED DATA

Here we generate samples from two functions shown below.

y:l’l+$2*I1+$3*I2+...+1’m*1’m_1 (335)

z;,,1 = 1,2,...,m follows normal distribution with mean evenly distributed in [0, 1]
and standard deviation evenly distributed in [0.1, 1],

xiNN(i_l,(g(i_l)

m 10m

+0.1)%).

In order to compare mutual information between y and X = [z1,x9,...,x,,] with
different dependency, we first standardize X and then add noise ¢; on each ;. Since
mutual information is invariant to scaling, we can compute the scaled version directly

without scaling back.
I(y; [a} + €1, 25 + €2, .., Ty + €m1])

Here the superscript asterisk denotes standardized version. e; follows normal distri-
bution ¢; ~ N (0,0?) and by increasing the value of ¢, mutual information between
y and X is supposed to decrease.

We use both kNN methods to calculate mutual information and compare the

proposed lower bound (CCA kNN) with mutual information in full dimensions in
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different scenarios where different value of m and different number of samples are
used. k = 4 is used for kNN method. We change the value of ¢ from 0.1 to 0.5 and
run the experiments in 100 trials. The average value and standard error are shown
in Table. 3.1 and Table. 3.2. Here full kNN 1 and full kNN 2 denote results given by
Eq. (3.18) and Eq. (3.19) respectively.

For Eq. 3.34, analytic value of mutual information is accessible and is also shown
in the table. As we can see, for a low dimensionality problem such as m = 5, both
lower bound and two full KNN methods can give plausible results. They all decrease as
o increases and the value become significant smaller when o grows bigger. However,
when m = 100, results given by Eq. (3.18) become negative. Eq. (3.18) does provide
better estimation in high dimensions. But there is no significant drop in the results
when o increases. On the other hand, the lower bound decreases significantly as
dependency become weak. One may notice that, when m = 100 and sample size is
200 or 500, some lower bounds are slightly larger than the true values. This is due
to small sample size and numerical errors in kKNN. As we can see, when sample size
comes to 1000, the lower bounds are all smaller than the true values.

As is shown in the table, calculating kNN directly in high dimensions always gives
bad estimation. For Eq. 3.35, since it is nonlinear, we cannot get the analytic value
of mutual information. However, the results are pretty similar to those of Eq. 3.34.
The proposed lower bound gives more consistent performance than calculating kNN

in high dimensions.

REAL DATA SETS

Here we work on 4 real data sets from UCI machine learning repository. The descrip-
tion of the data sets is shown in Table. 3.3. Two of the data sets are multivariate and
the other two are univariate. Except Combined cycle power plant, the other three

have small data size and Residential building has a large number of attributes. As
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Table 3.1: Average and standard error over 100 trials for Eq. 3.34
m | No_smps | o full kNN 1 full kNN 2 CCA kNN Truth
0.1 0.3016 4 0.0020 1.2059 £+ 0.0068 | 1.9123 £+ 0.0047 | 2.3076
0.2 | 0.2738 £ 0.0022 1.1696 £ 0.0068 | 1.3929 + 0.0060 | 1.6290
200 0.3 | 0.2353 4+ 0.0025 1.1301 £ 0.0073 | 1.0687 £+ 0.0075 | 1.2470
0.4 | 0.1971£0.0028 | 1.0672 £ 0.0064 | 0.8389 £ 0.0064 | 0.9905
0.5 | 0.1558 £0.0031 | 0.9983 £ 0.0065 | 0.6765 £ 0.0070 | 0.8047
0.1 0.4841 + 0.0013 1.4488 £ 0.0052 | 2.1138 £+ 0.0038 | 2.3076
0.2 | 0.4441 £0.0015 1.3926 £+ 0.0054 | 1.5088 + 0.0045 | 1.6290
) 500 0.3 | 0.3913 +0.0016 1.3227 £0.0042 | 1.1573 £0.0040 | 1.2471
0.4 | 0.3308 £ 0.0021 1.2331 £0.0047 | 0.9088 £ 0.0042 | 0.9905
0.5 | 0.2698 £0.0022 | 1.1507 £0.0047 | 0.7238 £ 0.0043 | 0.8047
0.1 | 0.6200 £ 0.0009 | 1.6092 £ 0.0034 | 2.1849 £ 0.0028 | 2.3076
0.2 | 0.5680 4 0.0010 1.5290 £ 0.0033 | 1.5502 £ 0.0031 | 1.6290
1000 0.3 | 0.5000 4 0.0012 1.4403 £ 0.0036 | 1.1893 £ 0.0031 | 1.2471
0.4 | 0.4219+£0.0013 | 1.3378 £0.0034 | 0.9398 £ 0.0027 | 0.9905
0.5 | 0.3483 £0.0017 | 1.2464 £0.0032 | 0.7516 £ 0.0030 | 0.8047
0.1 | —0.2953 +0.0004 | 0.5782 £ 0.0071 | 2.1406 + 0.0061 | 2.3076
0.2 | —0.2952 4+ 0.0004 | 0.5618 £+ 0.0058 | 1.6708 £+ 0.0071 | 1.6290
200 0.3 | —0.2962 4+ 0.0004 | 0.5593 £ 0.0074 | 1.3723 £ 0.0076 | 1.2471
0.4 | —0.2961 4+ 0.0004 | 0.5514 £0.0067 | 1.1412 £ 0.0073 | 0.9905
0.5 | —0.2969 4+ 0.0004 | 0.5553 £ 0.0061 | 0.9784 £ 0.0080 | 0.8047
0.1 | —0.2864 4+ 0.0003 | 0.6127 £ 0.0043 | 2.1966 + 0.0049 | 2.3076
0.2 | —0.2867 4+ 0.0003 | 0.6150 £ 0.0046 | 1.5949 + 0.0048 | 1.6290
100 500 0.3 | —0.2861 4+ 0.0003 | 0.6153 £ 0.0046 | 1.2533 £ 0.0044 | 1.2471
0.4 | —0.2873 +0.0003 | 0.6013 £ 0.0045 | 1.0001 £ 0.0044 | 0.9905
0.5 | —0.2886 4+ 0.0003 | 0.5992 £ 0.0040 | 0.8326 £ 0.0048 | 0.8047
0.1 | —0.2802 4+ 0.0002 | 0.6373 £ 0.0034 | 2.2334 + 0.0033 | 2.3076
0.2 | —0.2810 +0.0002 | 0.6380 £ 0.0029 | 1.6037 + 0.0035 | 1.6290
1000 0.3 | —0.2813 +0.0002 | 0.6281 £+ 0.0031 | 1.2280 + 0.0030 | 1.2471
0.4 | —0.2821 +0.0002 | 0.6325 £ 0.0035 | 0.9846 £ 0.0028 | 0.9905
0.5 | —0.2833 +0.0002 | 0.6230 £ 0.0032 | 0.8019 £ 0.0034 | 0.8047

is done in previous experiments, noise ¢ ~ N(0,0?) is added to each attribute after
standardization and ¢ increases from 0 to 0.4. Here we start with 0 noise, because
the real data set is already noisy. Each time 75% data are randomly selected, and it
is repeated 40 times. The average value and standard error are shown in Table. 3.4.

As we can see, the lower bound works well in most cases except that in CSM
data set, when o = 0.3, the result is not significant different from that when ¢ = 0.2
or o = 0.4. However, the results of ¢ = 0 and ¢ = 0.2 are significantly different
which means for this data set, if the difference between dependencies is large, the

lower bound can still be used for comparison purpose. On the other hand, full kNN

only works well in data set Combined cycle power plant which has large data size and
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Table 3.2: Average and standard error over 100 trials for Eq. 3.35

m | No_smps | o full KNN 1 full KNN 2 CCA kNN
0.1 | 0.1934 +0.0032 | 1.1435+0.0057 | 0.8871 + 0.0077
0.2 | 0.1621 4+0.0032 | 1.1180 + 0.0068 | 0.7451 + 0.0073
200 0.3 | 0.13384+0.0029 | 1.0650 +0.0072 | 0.6217 + 0.0072
0.4 | 0.1066 +0.0029 | 1.0199+0.0073 | 0.5173 £ 0.0053
0.5 | 0.0660 4+ 0.0029 | 0.9735 =+ 0.0069 | 0.4230 £ 0.0056
0.1 | 0.3568 +0.0022 | 1.3747 +0.0043 | 0.9950 + 0.0048
0.2 | 0.3225+40.0021 | 1.3301 +0.0050 | 0.8416 + 0.0049
5 500 0.3 | 0.27144+0.0021 | 1.2489 4+ 0.0051 | 0.6950 + 0.0040
0.4 | 0.226540.0023 | 1.1876 + 0.0048 | 0.5830 £ 0.0042
0.5 | 0.17724+0.0025 | 1.0947 + 0.0050 | 0.4865 + 0.0043
0.1 | 0.4800+0.0014 | 1.5218 +£0.0039 | 1.0327 + 0.0042
0.2 | 0.4348 +0.0015 | 1.4709 +0.0036 | 0.8710 + 0.0032
1000 0.3 | 0.375240.0015 | 1.3783 +0.0036 | 0.7250 + 0.0031
0.4 | 0.3108 £0.0017 | 1.2843 +0.0035 | 0.6035 £ 0.0031
0.5 | 0.2507 +£0.0017 | 1.1992 4+ 0.0035 | 0.5044 £ 0.0028
0.1 | —0.2953 +0.0004 | 0.5508 + 0.0065 | 0.9422 + 0.0080
0.2 | —0.2960 + 0.0004 | 0.5528 +0.0064 | 0.8937 + 0.0069
200 0.3 | —0.2963 +0.0005 | 0.5413 + 0.0060 | 0.8365 £ 0.0073
0.4 | —0.2969 + 0.0004 | 0.5608 + 0.0080 | 0.7689 £ 0.0082
0.5 | —0.2973 +£0.0004 | 0.5380 = 0.0068 | 0.7045 £ 0.0080
0.1 | —0.2866 +0.0003 | 0.6070 + 0.0042 | 0.8014 + 0.0050
0.2 | —0.2873 +0.0003 | 0.6043 + 0.0043 | 0.7496 + 0.0041
100 500 0.3 | —0.2878 = 0.0003 | 0.5939 + 0.0042 | 0.6847 £ 0.0043
0.4 | —0.2892 +0.0003 | 0.6023 + 0.0051 | 0.6074 £ 0.0039
0.5 | —0.2900 &+ 0.0003 | 0.5994 + 0.0047 | 0.5423 £ 0.0039
0.1 | —0.2809 +0.0002 | 0.6312 +0.0029 | 0.7738 + 0.0028
0.2 | —0.2817 +0.0003 | 0.6295 + 0.0032 | 0.7245 + 0.0030
1000 0.3 | —0.2822 +0.0002 | 0.6271 +0.0031 | 0.6567 + 0.0028
0.4 | —0.2832+0.0002 | 0.6183 £+ 0.0031 | 0.5790 £ 0.0031
0.5 | —0.2842 +0.0003 | 0.6163 + 0.0031 | 0.5051 £ 0.0029

small dimensionality. For all the other three data sets, the results given by full kNN

cannot be used for comparison.

From all these experiments, we can see that we can only use the estimation given
by full kNN when the dimensionality is low and data size is not small. However, the

proposed lower bound gives consistent performance and it works well for comparison

purpose.

3.4.2 CHEMICAL RELEASE SIMULATION

In this section, a chemical release accident is simulated. The accident occurs in a

pipeline and the plume advects and diffuses over the affected area. Sensors are placed
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Table 3.3: Data set description

Data set Size | No. of attributes | No. of outputs
Concrete slump test 103 7 3
CSM 217 11 1
Residential building 372 103 2
Combined cycle power plant | 9568 4 1

to locate the release source. In this simulation, sensor locations are fixed during the
experimental period and observation data are collected with a fixed time interval.
At the same time, Bayesian inference is performed, where the estimation of release
location is updated at each time point. The performance of the proposed method is
assessed by looking at the uncertainty of the posterior distribution, which is quantified
by entropy. We also compare sensor locations selected by Bayesian optimization and

those selected on a prefixed grid.

Table 3.4: Average and standard error over 40 times for real data sets

Data set o full kNN 1 full kNN 2 CCA kNN

0. | —0.1322+0.0037 | 1.2288 £ 0.0105 2.1211 £ 0.0094

Residential 0.1 | —0.0051 £0.0022 | 1.3410+£ 0.0079 1.8525 £ 0.0092
building 0.2 | —0.0156 £0.0023 | 1.3091 £ 0.0092 1.6276 = 0.0073
0.3 | —0.0412 £0.0025 | 1.2828 £ 0.0097 1.4841 £ 0.0079

0.4 | —0.0670 £0.0021 | 1.2841 4+ 0.0097 1.3865 £+ 0.0066

0. 1.2957 + 0.0009 1.2961 £ 0.0008 1.3002 £ 0.0010

Combined cycle 0.1 | 1.1976 £ 0.0009 1.1681 £ 0.0009 1.2233 £ 0.0013
power plant 0.2 | 1.0236 £ 0.0008 0.9786 £+ 0.0010 1.0993 £ 0.0012
0.3 | 0.8900 £ 0.0010 0.8384 £ 0.0010 0.9807 £ 0.0015

1.4 | 0.7816 +0.0011 0.7262 £ 0.0013 0.8762 £ 0.0015

0. | —0.0176 = 0.0056 | 0.8124 £ 0.0130 0.8435 £ 0.0095

Concrete slump 0.1 | 0.0144 £ 0.0061 0.8482 £ 0.0129 0.7645 £ 0.0104
test 0.2 | 0.0124 £0.0067 | 0.8284 £0.01247 | 0.6764 £+ 0.0094

0.3 | 0.0015 £ 0.0068 0.7940 £ 0.0112 0.5314 £0.0118

0.4 | 0.0024 £0.0077 0.7860 £ 0.0182 0.4357 £0.0127

0. | —0.1903 £0.0039 | 0.7843 £0.0114 0.3611 £ 0.0069

0.1 | —0.1063 £0.0029 | 0.8462 £ 0.0113 0.3275 £ 0.0070

CSM 0.2 | —0.1041 £0.0032 | 0.8415+£ 0.0099 0.3086 £ 0.0063
0.3 | —0.1306 £0.0030 | 0.8634 £ 0.0092 | 0.3041 £ 0.0071

0.4 | —0.1287 £0.0036 | 0.8618 £ 0.0097 0.2854 £ 0.0068

o6




DISPERSION MODEL

In this simulation, we adopt a 2D Gaussian puff based model from [68, 76] where the
model is used for studying data assimilation in atmospheric dispersion. The chemical
material sequentially released at the source is represented by a series of circular puffs.
The advection and diffusion of the plume is decided by meteorological conditions. The
concentration of each puff has a Gaussian-shape distribution and the concentration at
each spacial point is the summation of contributions from all the puffs. For simplicity,
deposition and puff splitting is ignored.

Each puff is characterized by three state variables: the center of the puff (X,Y),
the radius r and the mass (). The advection is decided by the wind at the puff center
and the radius of the puff is computed based on Pasuill parameterization [68, 76].

The dynamics of the kth puff at time t; is as follows:

Xio(t:) = Xp(ti-1) + Wapa cos(Wogp) AT (3.36)
Yie(t:) = Ya(tio1) + Wapa sin(Wp) AT (3.37)
Si(ts) = Se(ti1) + WipaAT (3.38)
ri(ts) = pySi(t:)® (3.39)
Qx(ti) = Qk(ti—1) (3.40)

where W,q and Wy, denote wind speed and wind direction respectively. AT is the
time interval from ¢; 1 to t; and Si(t;) is the distance the kth puff has transported
in AT. p, and ¢, are Karlsruhe-Jilich diffusion coefficients [68, 76] which specifies
meteorological conditions.

For the Gaussian shaped concentration, the mean is the puff center (X,Y’) and
the standard deviation is the radius r. At each spatial point (z,y), the concentration

is computed by summing up contributions of all the puffs

L& Qi) (X(ti) = 2)* + (Va(ts) — v)?
Clay) (ti) = kgl W exp <— 2 ()2 ) (3.41)
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where K is the number of puffs released by the time point ¢;. Fig. 3.1 shows the
advection and diffusion of one Gaussian puff. Note that the color bar of each puff is

different. In fact, due to the diffusing process, the average concentration is decreasing.

t = 3 min t = 24 min
10 . 10 .
5 . 5 .
§ o : of - .
>
-5} 4 -5} -
-10 ' -10 '
0 5 10 0 5 10
t = 36 min t = 48 min
10 T 10 I
5| . 51 .
£ of - of L
>
-5t 4 -5} -
-10 ' -10 '
0 5 10 0 5 10
x (km) x (km)

Figure 3.1: The dynamics of one puff. This figure shows the concentration surface of
one puff at different time. The release occurs at t = 0 and the release location is (0,
-1163.5 km). The wind direction is 0.17 m/s and the wind speed is 4 m/s. p, and g,
are 0.466 and 0.866 respectively. Note the color bar is different for each plot.

The following measurement model is used to relate model predictions with mea-

surement data for each of the NV sensors.

In(d;) = In(c;) + €meas; J=1,2,..., N .

€meas; ~ N(—0.005,0.1%)

Here c; represents the concentration at the location of sensor j and d; is the corre-

sponding sensor reading.
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SIMULATION SETTINGS

The affected area is a domain of 10 x 20 km?. The pipeline is from (0, —3km) to
(0,3km). The release accident can occur at any location along the pipeline. For
simplicity, we assume that there is only one release source. For comparison purpose,
we also grid the domain and select sensor locations on the grid points. The domain

is shown in Fig. 3.2.

10 - g - Y - Y > Y -
. Il pipeline
. o . . o . . ® o gnd point
3 . . . . . . . 0 0 —
g . . . . . . . . .
é ) . . ) . . ) ) )
> . . . . . . . . .
—3 . . . . . . . . . —
_10 Al A A A
0 2 4 6 8 10

x (km)

Figure 3.2: The grid and release location. The domain is grided by 11 x AU21. The
pipeline is on the y axis, ranging from -3 km to 3 km.

The total simulation time is 30 min and the sampling interval is 1 min. Data
collection starts from ¢, since in the beginning there are no chemicals in the sensing
area. Each time after the data is collected, Bayesian inference is performed. For the
first 10 min, a series of Gaussian puffs are released every 1 min at the source from t,.
The wind is from west with 10° standard deviation and the wind speed is 4 m/sec. In

this simulation, there are two unknown model parameters, release location and wind
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direction which both need to be inferred given measurement data. Although release

location is the main concern, here we will include both parameters in q.

SELECTION OF SENSOR LOCATIONS

Suppose N sensors need to be placed to collect data, we use D to denote the whole
vector of observation data, then D = {d;,ds,...,dy}. As discussed before, optimal
sensor locations can be selected by computing I(D; q|x). However, the optimal sensor
locations are very likely to change as the plume advects and diffuses over the district.
Assume sensor data is collected at a series of discrete time t1, to, ..., ¢, then for each
sensor 4,1 = 1,2,...,N, d; = [di*,d?, ...,d"™]. Therefore, 2 which will provide the

overall most information about ¢ should be selected in the following way:
¥ = arg max I(dy,dy,...;dN;q|z) . (3.42)

There are several issues in computing Eq. (3.42). First, as we know, each d; is an
M dimensional vector, which means [(dy,ds, ...,dy;g|z) needs to be computed in
over NM dimensions. Second, since the domain is continuous and we don’t have an
analytical form of mutual information, it is difficult to select best sensor locations,
not mentioning multiple sensors need to be placed at the same time. As discussed in
the last section, these problems can be all addressed with our proposed method.

In this simulation, three sensors are placed. Sensor readings are collected during
the simulation period to infer ¢q. Since sensors are placed before any data is collected,
which means the optimal sensor placement should provide most information about
the release location in average sense for all possible initial conditions (release location
and wind direction). The initial 1000 ensemble members are generated at random
for the release location and the wind direction from a uniform distribution over the
length of the pipeline and A(0,10°) respectively.

Three sensor locations are selected according to Algorithm 1. The three locations

selected are (4.8 km, -2.8 km), (2.8 km, 2.6 km) and (3.4 km, 4.1 km), which are shown
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in Fig. 3.3, represented by green diamonds. We also computed mutual information
over the grid, the heat map in Fig. 3.3 shows the value of mutual information at each
grid point. Three locations where mutual information has largest value are selected,
represented by blue diamonds. We can see that sensor locations selected by both

methods are spatially close.

Sensor 1 Sensor 1&2 Sensor 1,2&3
10 : 10 . 10

-10 . -10 .
0 5 10 0 5 10 0 5 10

x (km) x (km) x (km)

Figure 3.3: Mutual information surface and sensor locations. Three sensor locations
are selected in a greedy way. The heat map show mutual information I(d,t;q),
I(dy,ds, t; q) and I(dy,dsy,ds,t;q) at each grid point. Blue diamonds represent sen-
sor locations selected over grid points, while green ones are selected by Bayesian
optimization. Note the color bar for each plot is different.

RESULT ANALYSIS

Estimation of Release Location After sensor data is collected and Bayesian
inference is performed at each time point to estimate the release location. In this
simulation, EnKF is used for Bayesian inference. How to use EnKF in our problem is

detailed in Appendix. Here we simulate a release accident and see how the posterior
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distribution of the release location changes. The real release location is (0, -1291.7
m), where the wind direction is -0.026 rad, both of which are randomly selected from
their distributions. Observation data is collected and the distribution of the release
location is updated at each time point from ¢; to t3;. Fig. 3.4 shows the initial
prior distribution and posterior distributions after update at ¢;1, to; and t3;. It is
obvious that the real release location is captured by the posterior distribution and the
uncertainty is decreasing as more data are collected. One may note that the change in
uncertainty from ¢y to t1; is much bigger than that from t5; to t31, which means most
uncertainty is reduced in the first several updates. Due to the measurement noise
and computational approximations, the uncertainty of release location can never be

eliminated but might converge to a small level.

Comparison with Other Placements Here, we compare the selected sensor lo-
cations with 20 random placements under 50 different initial conditions. Each initial
condition is a combination of release location and wind direction both of which are
randomly sampled from their distributions. The performance is measured by condi-
tional entropy. For each placement, the entropy of ¢ is given by H(q|{ = &,z = z;).
Here, x represent the sensor location and the subscript j denotes a specific placement.
¢ is initial condition and &; implies a particular initial condition. To compare average
performance under different initial conditions, conditional entropy H(q|{, x = x;) is

computed by Eq. (3.43).

H(glg,x = ;) =Y p(€ =& H(ql€ = &, v = ) (3.43)
&

Fig. 3.5 shows the average performance of each placement over 50 different initial
conditions. We can see that mutual information via grids and mutual information via
Bayesian optimization have similar performance, and they both outperforms most of
random placements. They not only lead to smaller uncertainty in posterior distribu-

tion but also show a faster reduction in uncertainty.
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Figure 3.4: Distributions of parameters. The histograms in Figure (a) are prior
distribution and posterior distribution of release location at each time step. Figure
(b) shows corresponding distribution of wind direction. The real release location is
(0,-1291.7 km) and the real wind direction is -0.026 rad. Both of them are represented

by red vertical lines.
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Figure 3.5: Results comparison. These two figures compare the performance of pro-
posed strategy with 20 random sensor placements. Here, entropy is used to measure
the uncertainty. Figure (a) shows entropy of release location after each update and
Figure(b) shows joint entropy of release location and wind direction
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In this paper, 3 sensors are placed to illustrate Algorithm. 1 and test the perfor-
mance of the proposed methods. Since sensors are placed in a greedy manner before
making any observations, It can be easily scaled up. Although more sensors means
higher dimensionality in mutual information, we only need to compute its lower bound
in 2d. Thus, the main cost is running simulations. Since Bayesian optimization has
brought down the number of evaluations, only a small number simulations are needed

in each run.

3.5 CONCLUSIONS

In this paper, we address the sensor placement problem where certain Qol need to
be inferred from observation data. The Qol often include model parameters and/or
state variables but can also be other quantities. Inferring Qol usually involves solving
inverse problem which is formulated in Bayesian framework in this paper. On the
other hand, since data collected at different locations are likely to provide different
amount of information, sensors should be strategically placed.

Mutual information is one of the most common used criterion to guide the sensor
placement. It naturally quantifies the dependence between two variables and has
been widely discussed in the literature. However, computing mutual information is
challenging and the estimation in high dimension is always unreliable. Thus we pro-
pose a novel approach, which compute the lower bound of mutual information in only
two dimension. The approach is based on data inequality processing and canonical
correlation analysis. It projects observation and Qol into two dimension where the
projections have largest correlation. This lower bound of mutual information is shown
to be effective as a metric to select sensor locations. In addition, we apply Bayesian
optimization to deal with continuous domain. We place Gaussian prior on the metric,
which generates a mutual information surface. Then evaluations are made according

to acquisition function. In this way, the number of evaluations is greatly reduced.
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A chemical dispersion accident is simulated and it shows that the proposed ap-
proach outperforms random sensor placements by offering an obviously faster reduc-
tion in uncertain of Qol. Also the sensor locations selected by Bayesian optimization
are close to those by discretizing the domain into a fine grid, but with a considerably
less number of evaluations. The proposed approach is promising to address a vast

range of sensor placement problems.
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CHAPTER 4
BAYESIAN MODEL SELECTION FRAMEWORK FOR
IDENTIFYING GROWTH PATTERNS IN FILAMENTOUS

FunNaGi

4.1 INTRODUCTION

Myecelial expansion of filamentous fungi has an enormous impact on agriculture, an-
imal and human health and environmental sustainability [69, 39, 35, 6]. Hence,
understanding how a mycelium expands in different environments is of great practi-
cal significance. The process is extremely complicated and is orchestrated by several
basic physical and biochemical mechanisms [58]. A vast number of models have been
developed in the past decades to describe mycelial growth. Generally, these models
can be categorized into two groups: continuous and discrete. A continuous model,
appearing in the form of differential equations, usually describes mycelial network
by its average properties, such as biomass density, hyphal density and so on. The
model proposed by Edelstein [29] for example, falls into this category and is the basis
of many later models. This is a general model, which consists of various branching
and anastomosis and could be calibrated for different species. However, the model
is based on the assumption that unlimited nutrient is supplied and does not include
the interaction between fungi and its environment. Later work [30, 24] improved this
model by introducing processes such as uptake and translocation. Boswell [9] further

incorporated the hyphal division into active and inactive according to whether they
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are involved in the translocation of internal metabolites. This model was shown to be
applicable to the nutritionally heterogeneous environments. Boswell and Davidson
later developed several well-developed continuous models [7]. Unlike the continuous
models that are based on averaging the fungal properties, discrete models consider the
growth of each hypha and can produce a realistic visualization of fungal mycelium [8].
However, the construction of such a complex mycelial network is computationally ex-
pensive and it is much more difficult to include various processes into a discrete model
than into a continuous model.

Mathematical structures that describe the complexity of these fungal growth pat-
terns vary greatly. Thus, it is important to have access to a computational tool
capable to rank alternative models in the light of new experimental data. This raises
the issue of model selection, which is significant in several aspects. First, mycologists
can identify the growth model that best describes the experimental data. This can
determine the dominant growth patterns for various fungi species grown in diverse
environments; these include the study of fungal growth patterns in presence of an-
tifungal drugs. Second, as explained above, developing a new model is a nontrivial
task. This consists of identifying dominant growth patterns, describing them mathe-
matically, and validating whether the new model has improved descriptive power over
its predecessors. Choosing from existing models on the other hand, can save time and
energy in quickly identifying dominant growth patterns and guide the development
of the new model. In addition, for a series of models derived from the same prede-
cessor, the more complex ones may not always be the better choice than the simpler
ones. According to Occam’s razor, a more complex model should only be chosen if
it offers a significant improvement [60]. This principle should direct the development
of a new model, when additional processes are incorporated. Thus rigorous model
selection can be an important tool in studying fungal growth.

The most straightforward way to evaluate the performance of a model is by look-
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ing at how well it fits the observational data using measures such as mean square
error. However, in the context of comparing different models, these type of measures
are generally inappropriate. They favor heavily parameterized models able to “fit
anything” leading to over-fitting rather than an improved description of the true
biology. This is in contrast with the aim of mathematical modeling, which is to sim-
plify the complex process in the real world so as to study the key properties of the
phenomenon of interest [7]. Complicated models capable to mirror the reality are
meaningless to researchers as they describe spurious physical processes. Thus, when
comparing different models there is more to consider. Namely, a good model selection
approach should be a trade-off between data fitness and model complexity.

Two of the most commonly used approaches for model selection are Akaike infor-
mation criterion (AIC) and Bayesian information criterion (BIC). Both are based on
the likelihood function which reflects the how well the model fits the data and both
have an additional penalty term for the number of parameters in the model. Penalty
term in BIC is positively correlated with the number of observations and generally
larger than the penalty in AIC [52, 46]. However, the number of parameters may not
reflect the real complexity since different models could have different mathematical
structures. Bayesian inference uses relative probabilities to compare the models un-
der consideration. This general measure, which naturally embodies Occam’s razor,
favors models that fit the data well while penalizing models that rely heavily on the
data to adjust parameters. Smith and Spiegelhalter [72] pointed that under specific
conditions, AIC and BIC are two particular cases of Bayesian model selection. In
this work, we adopt a full Bayesian approach to the model selection problem.

Recent paper [52, 82] also talked about Bayesian model selection in biological
applications. But a very important issue which is always ignored is the existence
of model uncertainty. It should be noted that the model selected among a set of

candidates may not be the best in describing the real process. It is just better than
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the other candidates and it is quite possible that there still is a big discrepancy
between its output and the real process. Unfortunately, this model discrepancy is
always neglected in biological models, which causes the difficulty of describing real
world data and restricts the use of advanced model based approaches. In fact, no
model could fully describe the real process. The discrepancy which is due to the
missing physics and numerical approximations is inevitable for mathematical models.
Bryjarsdottir [13] illustrates the importance of recognizing model discrepancy by giv-
ing a simple example where the model used for simulation is slightly different from the
real model that generated observational data. It is shown that the prediction as well
as the estimation of the parameters can be biased and over-confident. The inclusion
of model discrepancy in the mathematical model is important not only for improving
model predictions but also for understanding the deficiencies of the model, which can
lead to further improvements. Thus, it is necessary to include model discrepancy in
model based studies.

In this chapter, the discrepancy is modeled with parametric structure and cali-
brated with observation data. We will show that the introduced model discrepancy
offers a way to evaluate the predictive capability of the best model in the context of
model selection. If the model discrepancy is very large, the best model cannot be used
even though it outperforms other candidates. On the other hand, the application of
Bayesian framework always involves solving inverse problems, no matter in model
calibration, experimental design or model selection. A variety of computational ap-
proaches have been developed to solve inverse problems. However, most approaches
will fail, when model error is introduced. Thus the computational approaches need
to be selected carefully in the presence of model error and this will be discussed later
in the paper.

In this chapter, we develop a framework to perform Bayesian model selection as

well as quantify the model discrepancy to study fungal growth. The models proposed
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by Edelstein [29] are used to illustrate our approach, where different growth pattern
are generated and compared, and the discrepancy of each model is quantified. Sec-
tion 4.2 provides the necessary background and introduces our approach and models
of interest. In Section 4.3, the simulation results are demonstrated to be consistent
with the aim of the approach and shows promising results for studying fungal growth.
In this paper, we only consider continuous models for the purpose of describing our

methodology; discrete models can be accommodated in a similar manner.

4.2 METHODS AND MODELS

This section describes the Bayesian model selection framework in the presence of
model uncertainty. The framework adopted here consist of the following three stages:
(1) uncertainty modeling, (2) model calibration, and (3) model comparison. The
methodology is first introduced from a general point of view followed by the compu-
tational approach and fungal growth models of interest.

To set notation, consider the following mathematical model for a biological system

of interest:

R(u,@modd) =0 (41)

Y= f(u(emodel)) . (42)

Here, R is some operator, u is the solution or the state variable and 6,,,,4¢; is a set
of model parameters, which usually have a physical interpretation. For the purpose
of this paper, Eq. 4.1 is a partial differential equation describing average properties
of fungal mycelium in time and space such as hyphal density and tip density, whereas
Omoder is the set of unobserved growth parameters. In addition, f is a map from
the solution to the prediction quantity y that can be compared with experimental
measurements D,,..s. Note, that the model in Eq. 4.2 provides the avenue through

which model parameters can be inferred from experimental data. However, there
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are several issues that need to be address before carrying out model calibrations and

model selections.

4.2.1 TUNCERTAINTY MODELING

The main challenge in using computational models along with experimental data
for scientific discoveries, such as determining fungal growth patterns, is that the
process follows a path contaminated with errors and uncertainties. This includes
measurement errors, structural uncertainties, errors due to numerical discretization,
and uncertainty in model parameters. This work employs probability to represent
uncertainty and Bayesian inference to update the uncertainty of model parameters
in light of experimental data.

In general, among all these uncertainties, the most important ones are structural
uncertainties that arise due to missing physics in Eq. 4.1. As a result, there is always
some discrepancy between the output of the physical model and the values of the real
process. A common approach for specifying the structural uncertainty model is that
of Kennedy and O’Hagan [49]. In this approach, the true (but unknown) value of the

observable, d.., is assumed to be related to the model by,

dtrue - f(u(emodel)) + Estruct s (43)

where €44 18 a statistical model used to represent the structural uncertainty. This
discrepancy model has its own parameters, 0g,., called hyper-parameters, which

define the probability density function (pdf) of the errors as follows:

Estruct ™~ pstruct(estructwstruct) . (44)

Because, the experimental data is noisy due to sensor imprecision, the measure-
ment error €,..s usually follows a known pdf pees(€meas) that is defined by the

specifications of the experimental apparatus. This results in the following relation
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between the observable d,,..s and the true value of the observable d,e.
dmeas = dtrue + €meas - (45)

Finally, the relation between the observable d,,..s and model parameters is given
by combining Eq. 4.3 and 4.5. This measurement model, Eq.4.6 defines the likeli-
hood function and Bayes rule can be used to update the knowledge of both physical

parameters and hyper-parameters, simply denoted by 6 = [0odei, QStmct]T.

dmeas - f(u(emodel)) + Estruct + €meas - (46)

Since Bayes rule is used as the inference engine, then a prior probability distri-
bution needs to be defined for the parameters 6 ~ p(0) = p(Omoder)P(Ostruct). Note
that the additive errors introduced in the previous equations are not a requirement;
multiplicative errors are possible as well.

To summarize, the statistical model for the biological system of interest is given

by:
R(t, Omoger) = 0 (4.7)
Ameas = f(U(Omodet)) + Estruct + €meas (4.8)
Estruct ~ Dstruct (€struct|Ostruct) (4.9)
€meas ~ Dmeas(€meas) (4.10)
0 = [Omodets Ostruct)” (4.11)
P(0) = p(Omodet)P(Ostruct) - (4.12)

So far, we have addressed the structural uncertainty in Eqgs. 4.1 and 4.2 by in-
troducing a discrepancy model according to Kennedy and O’Hagan formalism [49].
This arises due to the inadequate form of models in Egs. 4.1 and 4.2. Without this
discrepancy model the prediction as well as the estimation of the parameters can be

biased and over-confident [13].
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There is also a complementary approach to address structural uncertainty by spec-
ifying a set of candidate models, each described by different structural equations. This
concept can be extended to build a set of K model classes M = {M;, Ms, ..., Mk},
where each model class M; can differ from the rest by at least one definition in the set
of equations 4.7-4.12. For example, each model class M; has its own structural equa-
tion R; and parameters #; and prior distribution over parameters p(6;|M;). However,
all candidate model classes should share the same measurement data, D,,..s, which
is the basis for comparing different models.

Each model class in the set M is defined using the following mathematical struc-
ture, which is similar with the set of equations in Eqs. 4.7-4.12, but each has its own

particularities.

Ri (ui’ efnodel) =0

dmeas = fl (ui(einodel)) + Eitruct + €meas

€struct ™ Pstruct (Estruct | estruct’ MZ)

M; : ,fori=1...K (4.13)

€meas ™ Pmeas (Emeas)

0; = [00 s O

i T
model ]

7
struct

PO M;) = P00t Mi)P(Oprser| M)

In this context, Bayesian analysis is also used to compute the relative model
probabilities given experimental data, D,,c.s, which provide the basis for the proposed
model comparison. Similar with model parameters, we also need to define the prior
probability p(M;| M) for model class M;. This is the probability assigned to M; based
on information that is independent of the data. In the presence of complete ignorance,
a uniform prior is appropriate, i.e. p(M;|M) = 1/K. Finally, the set of Egs. 4.13 and
prior probabilities p(M;| M), provide the necessary abstract mathematical constructs

to talk about Bayesian model calibration and Bayesian model selection.
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4.2.2 BAYESIAN MODEL CALIBRATION

In Bayesian model calibration, one seeks a complete probabilistic description of model
parameters that make the model consistent with the experimental data, D,,c.s. The
solution to this problem is the posterior probability density function of model param-

eters and it is defined by the simple but powerful BayeséAZ Theorem,

p(Dmeas |927 Mz)p(ez |Mz)
p(Dmea8|Mi)

Here, p(Dieas|ti, M;) is the likelihood function and it measures the agreement

p(92|Mz, Dmeas) - (414)

between the model output and the data for given values of the input parameters. In

the context of the previous section, this is given by,

struct? ?

p(Dmeas|9ia MZ) = Pconv (Dmeas - fi(ui(efnodel))

0’ M-) (4.15)

where peony is given by the convolution of the two pdfs representing model discrep-

7
struct?

ancies and measurement noise, Psruct (€44per |0 M;) and preas(€meas) Tespectively.

pconv(econvwztructa MZ) = /pstruct(estruct |92truct7 Mi)pmeas(econv - Estruct)destruct (416)

A common approach is to choose the model for the two pdfs,
Dstruct (€-gruct |0 iruet Mi) and Pricas(€meas) from the Gaussian family of pdfs, where the
hyper-parameters 6°,,.,., are normally used to parameterize the covariance matrix of

In this case, the convolution between the two Gaussian pdfs in Eq. 4.16 is easily

)
Estruct .

obtained analytically. This provides a tractable approach to evaluate the likelihood
function p(D,eas|6i, M;).

The denominator in Eq.4.14 is called the marginal likelihood or evidence. Overall,
this is just a normalization constant that ensures that the solution to the Bayes’ in-
verse problem, p(6;|M;, Dyeqs) is indeed a proper pdf that integrates to one. Nonethe-
less, this is a key quantity that will allow us to perform Bayesian model selection as

described in the next section.
p(Dmeas‘Mi) = /p(Dmeas‘euMz)p(ez‘Mz)dez . (417)
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In general, this integral cannot be computed analytically, which results in an
intractable Bayesian inference problem. Thus one has to resort to some sort of ap-

proximation as it will be described in Section 4.2.4.

4.2.3 BAYESIAN MODEL COMPARISON AND OcCCAM’S RAZOR INTERPRETATION

In the previous step, each model M; is calibrated separately given the observation
data D,,eqs. After model calibration, the uncertainties of both physical parameters
and model discrepancy have been quantified for each individual model. It still remains
to determine which model provides the best explanation for the observed data. Here,
Bayesian inference can be used again to calculate posterior probability of models,

which provides the basis for model comparison.

— p(Dmea5|Ml)p(Mz|M)
Zli{:l p(Dmeas|Mk)p(Mk‘M)

p(Mi‘DmeasuM) (418)

Note that in the presence of complete ignorance, p(M;|M) = 1/K, the rela-
tive posterior probability p(M;|Deqs, M) is determined entirely by the evidence,
P(Dimeas|M;), which is given by the normalization constant (the denominator) in the
calibration phase introduced above. Thus, calculating model posterior probabilities
can be easily performed in this step.

Models with corresponding high posterior probabilities are more likely to have
generated the data, or in other words, they provide a better representation of the
data than the rest of the models. This Bayesian model comparison can be viewed as
a natural formalization of Occam’s razor [60], which states that given multiple models
that explain the data equally well, one should prefer the simplest. This can be easily

seen by looking at the decomposition of the log-evidence by rearranging the terms in
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Eq. 4.14 and taking the expectation with respect to the posterior distribution.
p(91|Mu Dmeas)

p(0:| M;)
= /p(‘91|M27 Dmeas) hlp(Dmeas“giv Mz)dez

(92|MZ7 Dmeas)
p(6:]M;)

lnp(Dmeas|Mi) = lnp(Dmeaswm Mz) —In (419)

dé;

- /p(92|M17 Dmeas) In b

We can see that the log-evidence is the trade-off between the expected log-likelihood,
which provides a measure of goodness-of-fit (how well the model fits the data), and
Kullback-Leibler (KL) divergence [20] between posterior and prior pdfs. The latter is
an information theoretic measure, which measures the departure from the prior pdf
to the posterior pdf. The larger the divergence the more information the model has
extracted from the data. Thus, the KL divergence can be interpreted as a measure
of model complexity. Complex models have more degrees of freedom and thus are

capable to extract more information from the data.

expected log-likelihood information gain
hlp(Dmeas | Mz) = E[lnp(Dmeas“giv Mz)] - DKL (p(ez | Mi7 Dmeas) | |p(91 | Mz)) (420)
goodness-of-fit model complexity

The log evidence embodies a trade-off between how well the model fits the data
and how complex the model is. Thus, Bayesian model selection automatically enforces
Occam’s razor. This goes beyond looking at conventional measures such as root-mean-
square-error (RMSE), which need to be used in conjunction with cross-validation
methods to avoid over-fitting problems. Given the scarcity of experimental data
in some situations, cross-validation is not as feasible as Bayesian framework, which
allows models to be compared on the basis of a single data set. In practice, when
comparing two different models M; and M;, Bayes factor B;; is used to quantify how

preferable M; is against M;. It is defined as a ratio of two evidences:

p(Dmeas|Mi)
P(Drmeas| M;)

Usually, Bayes factor of 100 is considered strong in model selection, while Bayes factor

of 1-3.2 is “not worth more than a bare mention” [43, 82].
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4.2.4 COMPUTATIONAL APPROACH

In this work we adopt numerical sampling techniques, also known as Monte Carlo.
Markov Chain Monte Carlo (MCMC) sample-based methods have become the main
computational workhorse in scientific computing for sampling from a large class of
distributions. The most basic form of MCMC is Metropolis-Hastings (MH) algo-
rithm [62, 4], which generates a sequence of correlated samples that form a Markov
chain. The chain is started with an initial sample €, and a candidate sample 6* is
sequentially generated from a symmetric proposal distribution ¢(6*|@), which usually
has a Gaussian form. The candidate sample is more likely to be accepted if it causes
an increase in the value of the posterior pdf. The probability of acceptance does not
require the evaluation of the marginal likelihood, nonetheless this sampling technique
does have its own challenges as described in the next paragraphs.

In MH algorithm, the variance of the proposal affects the distance from the current
sample to the candidate sample. If the variance is large, then this will result in large
steps from the current sample, which may miss the target distribution and yield low
acceptance rates. On the other hand, small proposal variances yield highly correlated
samples and the chain will move too slowly. Obviously, MH requires careful tunning
of the proposal before using it to generate samples from the posterior distribution.
In response, more efficient algorithms have been proposed to address this problem.
Delayed Rejection Metropolis (DR) [62] employs a fixed number of proposals that
depend on the rejected samples. Delaying rejection decreases the autocorrelation in
the chain and forces it to move. On the other hand, Adaptive Metropolis (AM) [37]
adapts the variance of the proposal based on the previous samples. Delayed Rejection
Adaptive Metropolis (DRAM) algorithm [38] combines DR and AM approaches in a
complimentary way that systematically remedies each other’s shortcomings.

The most challenging cases for sampling algorithm involve big differences between

the support of prior and posterior pdfs. These are due to the overlap between the
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likelihood function and prior pdf that occurs in the regions of small value, far away
from high density regions. On this occasion, the acceptance rate of DRAM may be
low and it is quite likely to end up with highly correlated samples which are away
from the high density region of the posterior pdf [17, 21]. Unfortunately, this happens
commonly, when structural uncertainty is introduced. Since a small structural error
is always assumed at the beginning, model output obtained by propagating prior
samples are usually far away from the observation, which means likelihood and prior
pdf can only be overlapped in low density regions. In this case, typical HM algorithms
including DRAM can not guarantee the convergence of posterior samples, which is
likely to cause a failure in model calibration stage.

Transitional MCMC (TMCMC) is an adaptive multilevel sampling method that
aims to deals with this problem [4, 17]. Instead of directly sampling from the poste-
rior distribution, it progressively samples intermediate distributions until the target
distribution is sampled, see Eq. 4.22. The number of intermediate stages or levels,
M, as well as their corresponding exponent, «;, is automatically adapted based on
the target probability of acceptance. The effect of the exponents «; is to flatten the
likelihood function to increase the overlap between the intermediate posterior distri-
butions. Since the change between two adjacent intermediate distributions is small,
sampling a new intermediate distribution based on the former one is more efficient.
Multilevel sampling has been implemented in the C++ toolbox called QUESO [66],

which can be downloaded online!.

Hjjvil p(Dmeas|9ia Mz)a]p(92|Mz)

ei MiaDmeas = 4.22
(] ) ST REYA (4.22)
M
Sa; =1 (4.23)
j=

Note that all these numerical algorithms only provide samples from the posterior

distribution, without requiring the evaluation of the evidence. However, calculating

https://github.com/libqueso/queso
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the evidence is essential for Bayesian model selection. Given N samples from the

prior distribution, a straightforward Monte Carlo estimates of p(Diyeas|M;) such as
1 & L
p(Dmeas|Mi> ~ N Zp(Dmeaswi ) MZ) )
k=1

yields large variance as the main support of the prior pdf is usually very different
from the high likelihood region. The multilevel sampling provides a natural way
to estimate the evidence using thermodynamic integration. Namely, the variance of
Monte Carlo estimators is significantly smaller at each level due to the flatness of
the likelihood function, which provides a larger overlap between the likelihood and
prior pdf. Thus, the overall natural logarithm of the evidence, In p(D;,eqs|M;) can be

computed by summing over the log-evidences computed at all levels [17, 67].

4.2.5 FuNGaAL GROWTH MODELS

Bayesian model selection can be a very useful tool in studying fungal growth. It
not only helps researchers select the most suitable model for a particular fungus,
but also provides a criterion for researchers to decide whether extra processes should
be included when building a new model. For the rest of the paper, we will use an
example to illustrate the method. The candidate models we use are generated from
Edelstein’s model [29], which consists of various types of branching, anastomosis and
hyphal death and can be used to calibrate a variety of fungal models. In this model,
hyphal growth is described by its average properties: hyphal density and tip density.
Since a fungus grows radially and almost uniformly in all directions, only properties

along the radial direction are considered.

dp
on _ d(nv)
o o (4.25)

Here, xz is the distance from the spore center, p is hyphal density in units of

filament length per unit area, n is tip density (number per unit area) and v is tip
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extension rate. Both o and d are uncertain terms which represent growth pattern

as shown in Figure 4.1. Note that ¢ can be a combination of different branching

types (e.g. YH, YFH, YHD etc.). Letters are used here to represent different growth

patterns, e.g. YH describes a dichotomous branching and tip-hypha anastomosis. We

will use this model to generate candidates which have different branching types, and

then compare them via Bayesian model selection given observation data of hyphal

density p and tip density n.

Branching Biological Mathematical gy o
type version
Dichotomous o=an y
branching '
Lateral c=a.p .
branching
Tip-hypha o=fnp ’
anastomosis
Tip-tip o=—fn W
anastomosis
Tip death o=—on T
Tip death due o=pp X
/[ 9 To overcrowding :
%7
I
Lz
2 Hyphal de 5
death =P

Figure 4.1: Branching types and corresponding mathematical model
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4.3 NUMERICAL RESULTS AND DISCUSSIONS

The approach taken in this paper to demonstrate the effectiveness of the proposed
Bayesian model comparison, is to generate synthetic data using the YHD fungal
growth model and compare three candidate models YH, YHD and YFH in two par-
ticular scenarios. The goal is to showcase that for a particular scenario, the YHD
candidate model is not the only model selected as the best representation of the
data even though it has been used to generate the measurement data. This selection
outcome is supported by the high model complexity level detected by the Bayesian

model selection for this particular model and scenario.

4.3.1 SYNTHETIC DATA GENERATION

The data is generated by the following YHD model:

0

G

on n+ 3
— = —v— 4+ an— Bnp .
ot ox ! 2nP

The initial condition for this system is given by

pla,t =0) =e~" /%
n(z,t = 0) =0.5¢@65°/8
and the boundary conditions are given by:
plx =0,t) =1, p(x=100,t) =0
n(x =0,t) =0, n(z=100,t)=0
The evolution of the solution is computed within the [0, 5] temporal domain and
the [0, 100] spatial domain. Two calibration datasets will be generated to showcase
how Bayesian inference ranks various candidate models. The difference between the

two dataset is given by the value of parameter ~;, which affects the ranking of the

models.
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Dataset (Scenario) I: v, = 0.03 and Dataset (Scenario) II: 44 = 0.3

The true values for the rest of the parameters are given by: v = 0.8, a; = 0.1, and
b2 = 0.3. The datasets consists of 10 data points along x axis at t = 0.5 and ¢t = 5.
Figure 4.2 shows the synthetic data points for the first scenario. In the following

section, the data at t = 0.5 is used to infer the initial condition for candidate models

and data at t = 5 is used for model calibration.

(a) hyphal density att = 0.5 (b) tip density att = 0.5
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15 0.6
= = = hyphal density = = = tip density
F N B observation points B observation points
1.2 AR
u
1’
z N 1 ' 0.4
2 09 ' =
é " ‘m “ ) 2
5 - N g '¢ n
S 06 ! £ "
£ 1 0.2 ’ |
| v )
0.3 “ ’ 1
e 0. \
~

0 - B g
0 5 10 15 20 25 0 5 10 15 20 25
distance from the center distance from the center

Figure 4.2: Observation data. Ten observation points between 0 and 22.5 are evenly
selected along x axis. Observation data at ¢t = 0.5 is used to infer the initial condition
for candidate models and data at t = 5 is used for model calibration.

4.3.2 CANDIDATE MODELS AND UNCERTAINTY MODELING

Three candidate models are proposed here: YH, YHD, and YFH. In this section we
provide the formulation of the corresponding three model classes. Thus, we include

discrepancy models and prior probabilities for both model parameters and hyper-
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parameters.

0
— =nv
Ryy : Ot (4.26)
on _ 9(nv) N s
ot or < oanT e
9P _ o —
Rymp = {9 o (4.27)
on = o) +oqn — fanp
ot~ or 7
dp
Ryrn : 3§ O - (4.28)
on  J(nv)

= g Toamtoep— Banp

The parameters in these three models are considered unknown and thus a prior
distribution needs to be defined. Here, we use the same uniform prior distribution
U(0, 1) for all the parameters of the three candidate models.

All candidate models have the same boundary conditions as the true model used

to generate the synthetic data in the previous section. The models also share the

same parameterized initial condition,

p(z,t = 0.5) = 2@’ (4.29)

n(z,t = 0.5) =ce 9=/’ (4.30)

Parameters a, b, ¢, d and f are estimated by minimizing the mean square error
(MSE) between the observation data at t = 0.5 and the model shown above. This
minimization is done using the function fminunc in Matlab. The results are shown in
Fig. 4.3. The five optimized parameters are a = 0.0357, b = 1.3116, ¢ = 0.4761, d =
0.1223, f = 6.9407 and the meas-square-error (MSE) is 0.0446 for hyphal density
and 0.0018 for tip density.

Since we use synthetic data, no measurement noise is considered. Thus the obser-
vation model will only account for model discrepancy. Given that the two datasets

provide measurements of both tip density and hyphal density, and both of them are
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(a) infered initial condition for hyphal density (b) infered initial condition for tip density
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Figure 4.3: Inferred initial condition. Initial condition for candidate models is es-
timated using observation data at ¢ = 0.5. MSE is 0.0446 for hyphal density and
0.0018 for tip density.

positive quantities, here, we use a multiplicative form for model discrepancies €, and

€n-

d, =pe,, where ¢, ~InN(0,07) (4.31)

d, =ne,, where €, ~ InN(0,02) (4.32)

2

5 and 02 are two hyper-parameters. They are adjusted during

The variance o
model calibration to give more flexibility in fitting the observation data. These two

hyper-parameters are set to follow the inverse gamma distribution,

B

p(c?) = Fﬂ(:) (02)_(1_16_? : (4.33)

There are two parameters needed to define this distribution: shape parameter «
and scale parameter 5. Since we have already determined the fitting of the initial
condition, we have prior information regarding the magnitude of the model error.
Namely, we can set 3 = 0.0446 for o2 and 0.0018 for o) using the MSE obtained
during the fitting of the initial condition. To indicate that this is an informative
prior we set o = 10.

Finally, the complete model class formulation for the corresponding YH growth

model is shown in Eq. 4.34. The formulation for the other two models is easily

obtained by replacing the fungal growth model and replacing the definition for the
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parameter prior distribution in accordance with the model definition.

RYH .

BC

IC

Prior :

Meas.Model :

o _
8t = nvu

on _ O0(nv)

%= e Tom— Banp

p(r =0,t) =1, p(x =100,t) =0
n(z =0,t) =0, n(x =100,t) =0

0.5) = e~ =b*  with ¢ = 0.0357,b = 1.3116

=

8

~
I

n(z,t = 0.5) = ce"™@=* with ¢ = 0.4761,d = 0.1223
and f = 6.9407

d, = pe,, where ¢, ~InN(0,02)

d, = ne,, where ¢, ~ InN(0,02)

p(v|My ) = plai|Myn) = p(B2| My ) =U(0,1)
Bp

ap — 2
plo2|Myy) = ng )(Ui)_ap‘le %, with a, = 10
P
and 3, = 0.0446
. Bn
p(o2|Myy) = i (o2)~on~le U?L, with a,, = 10

[(an)
and 3, = 0.0018
(4.34)

In addition, since no additional information is considered to be known to dis-

criminate the models in the absence of data, the prior model probability is given by

p(Myy|M) = p(Mypp|M) = p(Mypy|M) = 1/3, where

M = {MYH> MYHD> MYFH}-

4.3.3 BAYESIAN CALIBRATION RESULTS

With the final formulation described in the previous section, model calibration can

be performed given observation data at ¢ = 5. A number of 5000 samples are drawn
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from the posterior distribution using TMCMC. Figs. 4.4(a)(b)(c) show the calibration

results for Dataset I, and Figs. 4.4(d)(e)(f) provide the results for Dataset II.
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Figure 4.4
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Due to model error, the outputs of a calibrated model may not be consistent
with the data. So it is necessary to check the consistency of model outputs with the
observation data. The discrepancy between the data and model outputs is quantified
in this paper using posterior predictive checks [34, 10]. We check whether the data lies
inside the 95% prediction interval. A prediction interval is a range in which a single
new observation falls with a certain probability [15, 57]. The probability determines
the width of the interval. Here, we use the 95% prediction interval. If most of the
data is in the 95% prediction region, then the data would be considered a plausible
outcome of the model.

In Fig. 4.5, hyphal density and tip density of the three candidate models are
predicted at t = 5 with their associated uncertainties. Nearly all the observation data
are within the 95% prediction interval. However, the prediction of different models
have different interval ranges, which reflects the different mount of uncertainty within
the calibrated models. In general, the more different is the candidate model from the
true model, the bigger the model discrepancy during calibration. The discrepancy
model provides increased flexibility to fit the data and consequently the prediction
is more uncertain. From Fig. 4.5(a), we can see that YHD model fits the data best
although the difference among three candidates is small when Dataset I is used. Thus
in this case, there is no obvious way to discriminate just by looking at prediction of
the models.

However, when Dataset II is used to calibrate the models, the prediction interval
of YHD model is narrowest and captures all the data points. Just but looking at the
prediction, YHD model is definitely the best choice. For YH model and YFH model
there is a consistency problem between the model outputs and the observation data.
Even though we account for model discrepancy in the observation model, the current
statistical models used cannot compensate for the real discrepancy. Where to add

the model discrepancy and how to model it is not trivial and beyond the scope of
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this paper. New research in this direction can be found in Refs.[64, 13].
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Figure 4.5: Model predictions at t = 5 using calibrated models with Dataset Scenario
I (a) and Dataset II (b).

4.3.4 COMPARISON RESULTS

Note that for Dataset I, it is not clear how to discriminate the three models just based
on how well they fit the data. As previously described, Bayesian model comparison
offers a more comprehensive way to compare the models based on posterior model
probability. Here, since a priori all models are equally likely, the posterior model
probability is solely determined by the evidence. Table 4.1 shows the calculated log-
evidence for the three models as well as the corresponding expected log-likelihood
that measures goodness-of-fit and KL divergence that measures model complexity.

The results show that YH model has the largest evidence. The evidence of YHD
model is slightly smaller than YH model but still much larger than YFH model.
Since there are no prior preferences over three candidate models, then YH model
might be selected as the most plausible one and the dominate branching types will be

Dichotomous branching and tip-hyphae anastomosis. However, this is not necessarily
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Table 4.1: Bayesian model comparison results for Dataset I (73 = 0.03)

Model Log evidence Expectation of log likelihood KL divergence

YH 20.844 35.807 14.964
YHD 21.384 39.403 18.020
YFH -8.292 33.340 41.632

Table 4.2: Bayes factors for Dataset I (3 = 0.03)

Bayes factor (/) | YH YHD YFH

YH 1 0.583  4.5e+12
YHD 1.716 1 7.7e+12
YFH 2.2e-13  1.3e-13 1

the best choice. Table 4.2 shows the Bayes factor of every two models. Considering a
ratio of 100 as strong evidence for model selection, YFH model will be definitely cast
aside. However, one can not select between YH model and YHD model confidently
based on this criterion since the Bayes factor is 1.716 which is not worth more than a
bare mention. One may notice that the real model that generates observation data is
a YHD model, which means YHD model should be overwhelmingly supported by the
data. However this is not the case here. The expectation of log likelihood represents
how well the model fits the observation data and for this metric YHD > YH > YFH.
This is consistent with the previous discussion about Fig. 4.5 which also shows that
YHD model fits the data slightly better that the other two, although visually the
difference between YHD and the other two models is not big. However, the evidence
reflects a trade-off between the data fitness and model complexity. Although YHD
model has the best data fitness, it is more complex than YH model, which can be
seen from KL divergence. As a result the YHD model has a larger penalization than
YH. This is consistent with the fact that in the true model v; = 0.03, which is much
smaller than those of other branching types. In this case, hyphal death can be taken
as a non-dominant branching type which explains the above results. The posterior

model probabilities are p(My g| M, Dyeas) = 0.63, p(My p| M, Dpeqs) = 0.37, and
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p(Myrg|M, Dypeas) = 0.0. Thus, there is not sufficient evidence to rule out model
YH, or YHD for that matter. Both YH and YHD provide an adequate representation
of the data, and the posterior model probability reflects this uncertainty.

When 7, is increased to 0.3, then the ranking of the models changes as shown in
Table 4.3 and Table 4.4. For Dataset II, we can see that the evidence of YHD model
is much larger than the other models and the dominant branching types will be
Dichotomous branching, tip-hypha anastomosis and hyphal death. There is no doubt
in this case that YHD is the best model to describe the data, which is in agreement
with prediction shown in Fig. 4.5(b). The posterior model probability is one for YHD
and zero for YH anf YFH. In this case, YH and YFH have big deficiencies in fitting
the data, thus neither of these two will be selected.

Table 4.3: Bayesian model comparison results or Dataset II (7, = 0.3)

Model Log evidence Expectation of log likelihood KL divergence

YH -50.392 -0.787 49.605
YHD 17.021 35.253 18.232
YFH -97.171 -4.432 92.739

Table 4.4: Bayes factors for Dataset II (7 = 0.3)

Bayes factor (/) YH YHD YFH

YH 1 5.3e-30  2.1e+20
YHD 1.9e+29 1 3.9e+49
YFH 4.8e-21  2.6e-50 1

In the case where only YH and YFH are considered, then YH again would be
chosen over YFH according to the Bayes factor shown in Table 4.4. However, from
Fig. 4.4(d), we can see that structural parameter af, is around 0.2 which means
structural error in hyphal growth model has a standard deviation of 0.45. This
structural error is big considering hyphal density is smaller than 1 in our problem.
This large uncertainty is also reflected in Fig. 4.5(b) where the prediction interval of

hyphal density is quite wide for YH model. Thus, due to large discrepancy and wide
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prediction intervals, one needs to reconsider whether this is a sufficient representation
of the reality. The option in this case is to generate new alternative models and repeat
the comparison process. The process also offers some insight into which branching
types should further be considered by ignoring first the ones included in the models

with low evidence values.

4.4 (CONCLUSIONS

Mathematical models play an important role in studying fungi. A vast number of
models have been developed to describe various processes involved in fungal growth.
This raises the importance of model selection. This chapter develops a systematic
framework based on Bayesian model selection for comparing models in the presence
of model uncertainty. In contrast to more classical measures of data fitness, Bayesian
model selection uses posterior model probabilities to rank candidate models. This
measure naturally obeys Occam’s razor since it uses the trade-off between data fitness
and model complexity to select the best representation of the observed phenomenon.
The application of this method is illustrated with an example where three fungal
growth models are compared given observation data synthetically generated. The
introduced model uncertainty not only helps in data fitting, but also provides a more
accurate prediction as well as a perspective to evaluate the results of model selection.
The promising results provide us with the hope that the proposed computational

framework may become a widespread tool in studying fungal models.
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CHAPTER 5

HYPOTHESIS GENERATION FOR MODEL DISCREPANCY

5.1 INTRODUCTION

In Chapter. 4, we introduced model discrepancy which offers a way to evaluate the
predictive capability of the best model in the context of model selection. If the model
discrepancy is very large, the best model cannot be used even though it outperforms
other candidates. In this chapter, we will go deeper into the model discrepancy and
try to explore the missing structure.

Simulation models are widely used to study complex physical process. These mod-
els are generally based on current scientific understanding. To improve the predictive
performance, observation data are collected to infer parameters within the model.
Sometimes these parameters themselves are of scientific interest as they have specific
physical meaning. However, due to limitation of human knowledge, there is always
a discrepancy between model output and the real process. Bryjarsdéttir [13] shows
that if model discrepancy is ignored, predictions and inferences about parameters will
be biased and overconfident.

A common way to include model discrepancy is proposed by Kennedy and O’Hagan

[49], which is shown in Eq. 5.1.
d([lf) = y(l’) + €meas = f(!lﬁ', 9) + €model + €meas - (51)

where the real process output y(z) is represented by physical model f(z, #) plus model
discrepancy €,04¢. d(x) is the observation data and €,,.,s indicates measurement

noise. Usually, we have prior knowledge about physical parameter # and model
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discrepancy €,,04e- Once observation data are collected, knowledge about 6 and
€moder Will be updated through Bayesian inference.

In Chapter. 4, we model this discrepancy with a lognormal distribution inA/ (0, o%)
where 0 is a hyperparameter and can be adjusted according to the observation data.
This structure offers the flexibility to fit the data. Large discrepancy will lead to
large value of o2. This approach was used to show the necessity of including model
discrepancy and it served its purpose. However, for general application, a single
normal distribution is far from satisfactory as for different x the discrepancy €,,04e
are usually different.

A popular way to model the discrepancy is using Gaussian process. This method
has been widely disscussed in the literature [49, 13, 12]. Gaussian process is a
distribution for a function. Each value of the function follows normal distribution
and values together follows multivariate normal distribution. Once some function
values are observed, the conditional distribution of the other can be easily calculated
through Bayes’ rule. The covariance between different values are usually quantified
with distance-based kernels, which means if the function value is obtained at some
point, the value of nearby points can also be inferred. This property makes Gaussian
process work well for interpolation. In fact, Gaussian process alone often serves
as an emulator [81]. However, in that case, a much larger number of observation
data need to be collected. Bryjarsdéttir [13] conducted various experiments with
Gaussian process over model discrepancy. The results show that for interpolation,
Gaussian process remarkably improves the predictive performance of the original
model. However, more information is required in order to make good inference of
physical parameters. When comes to extrapolation, Gaussian process is unable to
make good prediction even if more information about physical process is provided.

In fact, Eq. 5.1 has an obvious limitation, that is €,,,4¢; is not necessarily addi-

tive. €moder can be embedded in f(x,0) and this is common for systems described
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by differential equations. A compensation term in observation model can not count
for the real missing structure. In this chapter, instead of using surrogate for the dis-
crepancy, we try to explore the behavior of the discrepancy, and uncover the missing
structure. An improved model is not only helpful for system prediction and inference

of parameters but also good for scientific discovery.

5.2 METHODOLOGY

To set notation, consider the following simulation model:
R(x,0,¢) =0 (5.2)

R is some operator and @ represents physical parameters. & denotes state variable,
which usually contains multiple states @ = [z1,xs,...,xy]|. € represents the missing
structure. Here we assume Eq. 5.2 is a set of differential equations. We will propose
a method to generate hypothesis about the structure of e.

The main idea of the method is that although e is unknown, it is supposed to
have connection with x, and we can try to uncover this connection by measuring how
strong ¢ is related to @ or transformations of & such as 2%, x 75, etc. However, we
cannot treat € as a single variable with some prior distribution. Since states usually
change with time and space, € should also have different value accordingly. In many
cases, differential equations are solved with the process of discretization. This means
states x at different time points can be regarded as independent variables. Eq. 5.3

shows the discretized version of Eq. 5.2.
L(x(t),0,¢(t)) =0, t=0,1,2,..T (5.3)

As discussed above, €(t) at each time point ¢ can also be taken as an independent
variable. In this way 7" new parameters are introduced and these parameters can be

inferred along with physical parameters and states. So, although we don’t know the
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exact form of €, we can still work on the values of € at discretized time points. We can
place a high-dimensional prior distribution over € at all discretized time points and
update it given observation data. Once we have posterior distribution of x(¢) and
€(t), we can measure the dependence between them and generate hypothesis about
the structure of e.

This process includes two steps. The first one is to get posterior distribution of €(t)
and (). The second one is to measure their dependence. Since 7" affects the accuracy
of the solution for differential equations, it cannot be too small. As a result, we have
to solve the inverse problem in high dimensions. In Chapter. 2, we have proposed
an Bayesian inference method which can be applied here. The second step is to
measure the dependence between €(t) and x(t)(or its transformations). Here, mutual
information is adopted as the metric. For example, if we want to check which state
is most related to €, we can calculate I([¢(0),€(1), ..., e(T)], [x:(0),x;(1), ..., 2;(T)]) for
1t =1,2,..., M and select the state with highest mutual information. By doing this,
we can claim certain state is contained in e. Since mutual information need to be
calculated in high dimensions we can first apply CCA to map both vectors to low
dimensions as we did in Chapter. 3. This process is shown in Algorithm. 2. After
selecting x;, we can further complicate it by adding new ¢, such as €*x; and repeat the
algorithm for inferring €*. All of these hypothesis can be used as candidate models,
and in the end, model selection will be performed to select the best one. The process

of conducting model selection has been discussed in Chapter. 4.

5.3 NUMERICAL EXPERIMENTS

In this section, we will first work on Lotka-Volterra equations and show how to use
the proposed method to generate hypothesis for the model discrepancy. Then we will
generate hypothesis for the fungal growth model which has been studied in Chapter. 4.

Unlike Lotka-Volterra equations which only needs to be discretized on temporal axis,
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Algorithm 2 Hypothesis generation about unknown structure e

Discretize the model as well as €.

Place a high-dimensional Gaussian prior over € at all discretized time points.

Use EnLLVM to obtain the posterior distribution for € as well as state variables.

Use approximate MI in high dimensions proposed in Chapter. 3 to find which

functions of @ are related to the unknown function e.

5: Based on the result of step 4, complicate it by introducing new € and repeat step
1-4.

6: Use this information to generate a number of hypothesis and perform Bayesian

model selection to select the most plausible structure of e.

the fungal growth model needs to be discretized on both temporal and spacial axis’s

and this will lead to much higher dimensionality.

5.3.1 LOTKA-VOLTERRA EQUATIONS

The Lotka-Volterra equation

is widely used to describe the dynamics of biological systems in which a prey and its
predator interact. The states x; and x5 are population of a prey and its predator,
t1(t) and @5(t) represent the growth rates of the two populations over time. For
the first experiment, we assume that 0.4zs(f) in Eq. 5.5 is missing and we use ¢
to represent this missing structure. We will use the proposed method to generate
hypothesis for e.

First we discretize the equations and the discretized version is shown below:

At is the time interval between t;,; and t;. Here At = 0.05 and the total time span
is [0,5]. So the dimensionality of € is 100, ¢ = [¢(0),€(1),...,€(199)]. Observations
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are made every 10 time steps. The initial conditions are z1(0) = 1 and x2(0) = 2.5.
We place a uniform prior over €(t;), €(t;) ~ U(0,1) and perform Bayesian update
using EnLLVM which we proposed in Chapter. 2. For EnLLVM, 200 samples are
used and the dimensionality of latent space is 10. After getting posterior samples
of €, z; and z9, we calculate mutual information between [¢(0),€(1),...,€(99)] and
[21(1),21(2), ..., 21(100)], [x1(1),21(2), ..., 21(100)] respectively. Since the dimension-
ality is high, we use first map it to lower dimensions, as we did in Chapter. 3. The
simulation runs 100 times, and the average of mutual information as well as the num-
ber of times that each state is selected over the other one are shown in Table. 5.1. As
we can see, The average of mutual information between € and x5 is higher than that
between € and x;. And in 100 trials, there are 81 trials when x5 has larger mutual
information than x;. So we can come up with the hypothesis that z, is part of € and
a candidate model can be the one with € replacing by axy where a is some constant.
We can also repeat the process by taking a as a variable and infer the structure of a.
This might lead to new candidate model. Note that all the candidate models will be
eventually ranked using Bayesian model selection, so false candidates never hurt.
We also test other scenarios and the results are also shown in Table. 5.1. As we
can see, if the missing structure is 0.3x129, then € has nearly the same relation with
21 and x,. In this case, we can choose both as candidates or complicate the structure
by introducing a new e. For example, assume we pick x1, we can further complicate
it by multiplying a new ¢, then the missing structure becomes ex;. Same procedure
can be taken to infer the structure of new e. As is shown in Table. 5.1, it is more
related to z9 than z;. Thus a plausible candidate model can be ax;zs where a is

some constant.
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Table 5.1: Results for 100 trials

missing structure | avg. MI of z; | avg. MI of x5 | no. of z; no. of xy
) 1.3282 1.3014 62 38
0.4x9 1.0196 1.1452 19 81
0.3x122 1.2303 1.2191 51 49
0.3z (e.g. €ry) 1.2301 1.2650 33 67

5.3.2 FuNGAL GROWTH MODELS

In Chapter. 4, Bayesian model comparison is conducted among different candidate

models and the most plausible one is selected. In this section, we will show how to

generate candidates for fungal growth models. For this experiment, the model we use

is shown in Eq. (5.8).

Ry(z .

BC

1C

dp
on _ 0.80(n)
E - 81’ + 0.03n + €

plx =0,t) =1, p(z =100,t) =0
n(x =0,t) =0, n(z =100,t) =0
plz,t =0.5) = e =0 with a = 0.0357,b = 1.3116

n(z,t = 0.5) = ce~@=? with ¢ = 0.4761, d = 0.1223, f = 6.9407
(5.8)

x is the distance from the spore center, p is hyphal density in units of filament length

per unit area and n is tip density (number per unit area). Here we take € as the

missing structure which can be any growth pattern shown in Figure 4.1. Note that ¢

might be also a combination of different branching types (e.g. YH, YFH, YHD etc.).

The discretized version is shown below.

p(@i tjr1) =p(@i, t;) + 0.3Atn(z;, ;) (5.9)
At
n(xi tjp1) = — 0.15A—x(n(xi+1, t;j) — n(xi_1,t;)) + (0.03At + 1)n(z;,t))
— AtE(I‘Z‘_l, t]) (510)
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Here At = 0.05 and the total time span is [0,5]. Az = 0.05 and the observing radius
is [0,5]. Since it involves both time and space, the dimensionality is much higher.
We use 20 steps on both ¢ axis and x axis, so the dimensionality for e is 400 and
1200 for combining €, p and n. We place a uniform prior over €(t;), €(t;) ~ U(0,0.5)
and perform Bayesian update using EnLLVM where 400 samples are used and the
dimensionality of latent space is 20. Observations are made average 10 time steps on
5 positions. We test several different cases using the proposed method and the result
is shown in Table. 5.2. As we can see, if the missing structure is 0.3p, € will have
larger mutual information with p than with n. And ap is a plausible hypothesis for
€. However, since the method includes applying EnLLVM and computing low bound
of mutual information both of which give approximate results, numerical errors are
inevitable. Thus, we might not always get the expected results. As we can see, if we
pick 0.3n as missing structure, although n is selected more times than p, the difference
is not big. This also happens when we take 0.3np as missing structure. First p will
be selected, then ideally n should be selected. However, it is hard to decide whether
€ is more related to n or p, as n has slightly larger average mutual information and p
has slightly more times being picked over n. In this case, it is safe to include both of

them as candidates and leave it to Bayesian model selection.

Table 5.2: Results for 100 trials

missing structure | avg. MI of p | avg. MI of n | no. of p no. of n
0.3p 1.4165 1.3983 63 37
0.3n 1.4068 1.4137 42 58
0.3np 1.4084 1.4041 56 44
0.3n (e.g. €p) 1.4076 1.4067 46 54

5.4 CONCLUSION

In this chapter, we proposed a method to generate hypothesis for model discrepancy

€. Since model discrepancy is usually related to model states, we try to find which
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state is more related to the discrepancy and then complicate it by introducing new
epsilon. For differential equations, we work on the discretized version. The values of €
at different time point are taken as independent variables and updated together with
states using EnLLVM. Then mutual information between discretized € and discretized
states is calculated.

The proposed method is tested on two models. The results of Lotka-Volterra equa-
tions are quite positive, as missing structures can be accurately identified. While for
the fugal growth model, different structures can not always be clearly differentiated.
The reason resides in the high dimensionality of the model. This method includes
two steps, applying EnLLVM to get the posterior distribution and computing lower
bound of mutual information, both of which require mapping from high dimensional
space to lower dimensions. As we know, the loss of information during dimension
reduction is inevitable, so both of these two steps can only give approximate results.
Since the original space of fugal growth model is much higher, it is supposed to have
larger approximation error.

In spite of its limitation, the proposed method provides a new perspective towards
the model discrepancy. As more methods aiming at solving high dimensional inference
are developed, we hope the proposed approach could help scientists to develop models

and even make scientific discoveries.
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